Boundary effects on the emergence of quasi-periodic solutions for Euler equations

被引:3
作者
Hassainia, Zineb [1 ]
Roulley, Emeric [2 ]
机构
[1] New York Univ Abu Dhabi, NYUAD Res Inst, POB 129188, Abu Dhabi, U Arab Emirates
[2] Univ Rennes, CNRS, IRMAR UMR 6625, F-35000 Rennes, France
关键词
fluid mechanics; Euler equations; vortex patches; KAM theory; Nash-Moser scheme; quasi-periodic solutions; NONLINEAR-WAVE EQUATIONS; V-STATES; KAM TORI; PERTURBATIONS; BIFURCATION; STATIONARY; REGULARITY; PATCHES; FLUID;
D O I
10.1088/1361-6544/ad9ba7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we highlight the importance of the boundary effects on the construction of quasi-periodic vortex patches solutions close to Rankine vortices and whose existence is not known in the whole space due to the resonances of the linear frequencies. Availing of the lack of invariance by radial dilation of Euler equations in the unit disc and using a Nash-Moser implicit function iterative scheme we show the existence of such structures when the radius of the Rankine vortex belongs to a suitable massive Cantor-like set with almost full Lebesgue measure.
引用
收藏
页数:81
相关论文
共 68 条
[1]   Gravity Capillary Standing Water Waves [J].
Alazard, Thomas ;
Baldi, Pietro .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 217 (03) :741-830
[2]  
ARNOLD VI, 1963, USP MAT NAUK, V18, P91
[3]   Quasi-periodic incompressible Euler flows in 3D [J].
Baldi, Pietro ;
Montalto, Riccardo .
ADVANCES IN MATHEMATICS, 2021, 384
[4]   Time quasi-periodic gravity water waves in finite depth [J].
Baldi, Pietro ;
Berti, Massimiliano ;
Haus, Emanuele ;
Montalto, Riccardo .
INVENTIONES MATHEMATICAE, 2018, 214 (02) :739-911
[5]   KAM for autonomous quasi-linear perturbations of mKdV [J].
Baldi, Pietro ;
Berti, Massimiliano ;
Montalto, Riccardo .
BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2016, 9 (02) :143-188
[6]   KAM for autonomous quasi-linear perturbations of KdV [J].
Baldi, Pietro ;
Berti, Massimiliano ;
Montalto, Riccardo .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (06) :1589-1638
[7]   KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation [J].
Baldi, Pietro ;
Berti, Massimiliano ;
Montalto, Riccardo .
MATHEMATISCHE ANNALEN, 2014, 359 (1-2) :471-536
[8]   Traveling Quasi-periodic Water Waves with Constant Vorticity [J].
Berti, M. ;
Franzoi, L. ;
Maspero, A. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 240 (01) :99-202
[9]   Pure gravity traveling quasi-periodic water waves with constant vorticity [J].
Berti, Massimiliano ;
Franzoi, Luca ;
Maspero, Alberto .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2024, 77 (02) :990-1064
[10]   Time quasi-periodic vortex patches of Euler equation in the plane [J].
Berti, Massimiliano ;
Hassainia, Zineb ;
Masmoudi, Nader .
INVENTIONES MATHEMATICAE, 2023, 233 (03) :1279-1391