Properties of relativistic electron precipitation: a comparative analysis of wave-induced and field line curvature scattering processes

被引:2
作者
Capannolo, Luisa [1 ]
Staff, Andrew [1 ]
Li, Wen [1 ]
Duderstadt, Katharine [2 ]
Sivadas, Nithin [3 ,4 ]
Pettit, Joshua [3 ,5 ]
Elliot, Sadie [6 ]
Qin, Murong [1 ]
Shen, Xiao-Chen [1 ]
Ma, Qianli [1 ,7 ]
机构
[1] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA
[2] Univ New Hampshire, Earth Syst Res Ctr, Durham, NH USA
[3] NASA, Space Weather Lab, Goddard Space Flight Ctr, Greenbelt, MD USA
[4] Catholic Univ Amer, Dept Phys, Washington, DC USA
[5] George Mason Univ, Coll Sci, Fairfax, VA USA
[6] Univ Minnesota, Coll Sci & Engn, Sch Phys & Astron, Minneapolis, MN USA
[7] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA USA
关键词
radiation belts; electron precipitation; field line curvature scattering; wave-particle interactions; atmospheric energy input; precipitating electron flux; electron loss; EMIC waves; VAN ALLEN PROBES; EMIC WAVES; SOLAR-WIND; MAGNETOMETER OBSERVATIONS; GEOMAGNETIC CONDITIONS; RADIATION BELTS; MAGNETIC-FIELD; IMPACT; FLUXES; SIMULATION;
D O I
10.3389/fspas.2024.1495008
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We analyze the properties of relativistic (>700 keV) electron precipitation (REP) events measured by the low-Earth-orbit (LEO) POES/MetOp constellation of spacecraft from 2012 through 2023. Leveraging the different profiles of REP observed at LEO, we associate each event with its possible driver: waves or field line curvature scattering (FLCS). While waves typically precipitate electrons in a localized radial region within the outer radiation belt, FLCS drives energy-dependent precipitation at the edge of the belt. Wave-driven REP is detected at any MLT sector and L shell, with FLCS-driven REP occurring only over the nightside-a region where field line stretching is frequent. Wave-driven REP is broader in radial extent on the dayside and accompanied by proton precipitation over 03-23 MLT, either isolated or without a clear energy-dependent pattern, possibly implying that electromagnetic ion cyclotron (EMIC) waves are the primary driver. Across midnight, both wave-driven and FLCS-driven REP occur poleward of the proton isotropic boundary. On average, waves precipitate a higher flux of >700 keV electrons than FLCS. Both contribute to energy deposition into the atmosphere, estimated of a few MW. REP is more associated with substorm activity than storms, with FLCS-driven REP and wave-driven REP at low L shells occurring most often during strong activity (SML* < -600 nT). A preliminary analysis of the Solar Wind (SW) properties before the observed REP indicates a more sustained (similar to 5 h) dayside reconnection for FLCS-driven REP than for wave-driven REP (similar to 3 h). The magnetosphere appears more compressed during wave-driven REP, while FLCS-driven REP is associated with a faster SW of lower density. These findings are useful not only to quantify the contribution of >700 keV precipitation to the atmosphere but also to shed light on the typical properties of wave-driven vs FLCS-driven precipitation which can be assimilated into physics-based and/or predictive radiation belt models. In addition, the dataset of similar to 9,400 REP events is made available to the community to enable future work.
引用
收藏
页数:18
相关论文
共 126 条
[1]   The magnetic local time distribution of energetic electrons in the radiation belt region [J].
Allison, Hayley J. ;
Horne, Richard B. ;
Glauert, Sarah A. ;
Del Zanna, Giulio .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2017, 122 (08) :8108-8123
[2]   Energetic Electron Precipitation Driven by Electromagnetic Ion Cyclotron Waves from ELFIN's Low Altitude Perspective [J].
Angelopoulos, V. ;
Zhang, X. -j. ;
Artemyev, A. V. ;
Mourenas, D. ;
Tsai, E. ;
Wilkins, C. ;
Runov, A. ;
Liu, J. ;
Turner, D. L. ;
Li, W. ;
Khurana, K. ;
Wirz, R. E. ;
Sergeev, V. A. ;
Meng, X. ;
Wu, J. ;
Hartinger, M. D. ;
Raita, T. ;
Shen, Y. ;
An, X. ;
Shi, X. ;
Bashir, M. F. ;
Shen, X. ;
Gan, L. ;
Qin, M. ;
Capannolo, L. ;
Ma, Q. ;
Russell, C. L. ;
Masongsong, E. V. ;
Caron, R. ;
He, I. ;
Iglesias, L. ;
Jha, S. ;
King, J. ;
Kumar, S. ;
Le, K. ;
Mao, J. ;
McDermott, A. ;
Nguyen, K. ;
Norris, A. ;
Palla, A. ;
Roosnovo, A. ;
Tam, J. ;
Xie, E. ;
Yap, R. C. ;
Ye, S. ;
Young, C. ;
Adair, L. A. ;
Shaffer, C. ;
Chung, M. ;
Cruce, P. .
SPACE SCIENCE REVIEWS, 2023, 219 (05)
[3]   VISCOUS INTERACTION BETWEEN THE SOLAR WIND AND THE EARTHS MAGNETOSPHERE [J].
AXFORD, WI .
PLANETARY AND SPACE SCIENCE, 1964, 12 (01) :45-54
[4]   Variations of the Electron Fluxes in the Terrestrial Radiation Belts Due To the Impact of Corotating Interaction Regions and Interplanetary Coronal Mass Ejections [J].
Benacquista, R. ;
Boscher, D. ;
Rochel, S. ;
Maget, V. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (02) :1191-1199
[5]   On the Spatial and Temporal Evolution of EMIC Wave-Driven Relativistic Electron Precipitation: Magnetically Conjugate Observations From the Van Allen Probes and CALET [J].
Blum, L. W. ;
Bruno, A. ;
Capannolo, L. ;
Ma, Q. ;
Kataoka, R. ;
Torii, S. ;
Baishev, D. .
GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (05)
[6]   Prompt Response of the Dayside Magnetosphere to Discrete Structures Within the Sheath Region of a Coronal Mass Ejection [J].
Blum, L. W. ;
Koval, A. ;
Richardson, I. G. ;
Wilson, L. B. ;
Malaspina, D. ;
Greeley, A. ;
Jaynes, A. N. .
GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (11)
[7]   Persistent EMIC Wave Activity Across the Nightside Inner Magnetosphere [J].
Blum, L. W. ;
Remya, B. ;
Denton, M. H. ;
Schiller, Q. .
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (06)
[8]   EMIC wave scale size in the inner magnetosphere: Observations from the dual Van Allen Probes [J].
Blum, L. W. ;
Bonnell, J. W. ;
Agapitov, O. ;
Paulson, K. ;
Kletzing, C. .
GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (03) :1227-1233
[9]   EMIC wave spatial and coherence scales as determined from multipoint Van Allen Probe measurements [J].
Blum, L. W. ;
Agapitov, O. ;
Bonnell, J. W. ;
Kletzing, C. ;
Wygant, J. .
GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (10) :4799-4807
[10]   Observations of coincident EMIC wave activity and duskside energetic electron precipitation on 18-19 January 2013 [J].
Blum, L. W. ;
Halford, A. ;
Millan, R. ;
Bonnell, J. W. ;
Goldstein, J. ;
Usanova, M. ;
Engebretson, M. ;
Ohnsted, M. ;
Reeves, G. ;
Singer, H. ;
Clilverd, M. ;
Li, X. .
GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (14) :5727-5735