Epitope and Paratope Mapping of a SUMO-Remnant Antibody Using Cross-Linking Mass Spectrometry and Molecular Docking

被引:0
作者
Comtois-Marotte, Simon [1 ]
Bonneil, Eric [1 ]
Li, Chongyang [1 ]
Smith, Matthew J. [1 ,2 ]
Thibault, Pierre [1 ,3 ]
机构
[1] Univ Montre?al, Inst Res Immunol & Canc IRIC, Montreal, PQ H3T 1J4, Canada
[2] Univ Montreal, Fac Med, Dept Pathol & Cell Biol, Montreal, PQ H3T 1J4, Canada
[3] Univ Montreal, Dept Chem, Montreal, PQ H2B V 0B3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
cross-linking; paratope mapping; moleculardocking; mass spectrometry; SUMO; antibody; SUMOYLATION SITES; DEAMIDATION; STABILITY; PROTEINS; DISVIS;
D O I
10.1021/acs.jproteome.4c00717
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The small ubiquitin-like modifier (SUMO) is an important post-translational modification that regulates the function of various proteins essential for DNA damage repair, genome integrity, and cell homeostasis. To identify protein SUMOylation effectively, an enrichment step is necessary, often requiring exogenous gene expression in cells and immunoaffinity purification of SUMO-remnant peptides following tryptic digestion. Previously, an antibody was developed to enrich tryptic peptides containing the remnant NQTGG on the receptor lysine, although the specifics of the structural interaction motif remained unclear. This study integrates de novo sequencing, intact mass spectrometry, cross-linking mass spectrometry, and molecular docking to elucidate the structural interaction motifs of a SUMO-remnant antibody. Additional cross-linking experiments were performed using SUMOylated peptides and high-field asymmetric waveform ion mobility spectrometry (FAIMS) to enhance the sensitivity and confirm interactions at the paratope interface. This study establishes a robust framework for characterizing antibody-antigen interactions, offering valuable insights into the structural basis of SUMO-remnant peptide recognition.
引用
收藏
页码:1092 / 1101
页数:10
相关论文
共 61 条
  • [1] Seeler J.S., Dejean A., Nuclear and unclear functions of SUMO, Nat. Rev. Mol. Cell Biol., 4, 9, pp. 690-699, (2003)
  • [2] Jansen N.S., Vertegaal A.C.O., A Chain of Events: Regulating Target Proteins by SUMO Polymers, Trends Biochem. Sci., 46, 2, pp. 113-123, (2021)
  • [3] Huang C.H., Yang T.T., Lin K.I., Mechanisms and functions of SUMOylation in health and disease: a review focusing on immune cells, J. Biomed. Sci., 31, 1, (2024)
  • [4] Bhachoo J.S., Garvin A.J., SUMO and the DNA damage response, Biochem. Soc. Trans., 52, 2, pp. 773-792, (2024)
  • [5] Lascorz J., Codina-Fabra J., Reverter D., Torres-Rosell J., SUMO-SIM interactions: From structure to biological functions, Semin. Cell Dev. Biol., 132, pp. 193-202, (2022)
  • [6] Vertegaal A.C.O., Signalling mechanisms and cellular functions of SUMO, Nat. Rev. Mol. Cell Biol., 23, 11, pp. 715-731, (2022)
  • [7] Lamoliatte F., Caron D., Durette C., Mahrouche L., Maroui M.A., Caron-Lizotte O., Bonneil E., Chelbi-Alix M.K., Thibault P., Large-scale analysis of lysine SUMOylation by SUMO remnant immunoaffinity profiling, Nat. Commun., 5, (2014)
  • [8] Lamoliatte F., McManus F.P., Maarifi G., Chelbi-Alix M.K., Thibault P., Uncovering the SUMOylation and ubiquitylation crosstalk in human cells using sequential peptide immunopurification, Nat. Commun., 8, (2017)
  • [9] Tammsalu T., Matic I., Jaffray E.G., Ibrahim A.F.M., Tatham M.H., Hay R.T., Proteome-wide identification of SUMO2 modification sites, Sci. Signaling, 7, 323, (2014)
  • [10] Impens F., Radoshevich L., Cossart P., Ribet D., Mapping of SUMO sites and analysis of SUMOylation changes induced by external stimuli, Proc. Natl. Acad. Sci. U.S.A., 111, 34, pp. 12432-12437, (2014)