Alchemical Free-Energy Calculations at Quantum-Chemical Precision

被引:2
作者
Crha, Radek [1 ,2 ]
Poliak, Peter [1 ,3 ]
Gillhofer, Michael [1 ,2 ]
Oostenbrink, Chris [1 ,2 ]
机构
[1] Univ Nat Resources & Life Sci, Inst Mol Modeling & Simulat, Dept Mat Sci & Proc Engn, A-1190 Vienna, Austria
[2] Univ Nat Resources & Life Sci, Christian Doppler Lab Mol Informat Biosci, A-1190 Vienna, Austria
[3] Slovak Univ Technol Bratislava, Inst Phys Chem & Chem Phys, Fac Chem & Food Technol, Bratislava 81237, Slovakia
关键词
MOLECULAR-DYNAMICS SIMULATIONS; BASIS-SETS; DENSITY FUNCTIONALS; MECHANICS; QM/MM; III;
D O I
10.1021/acs.jpclett.4c03213
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the past decade, machine-learned potentials (MLP) have demonstrated the capability to predict various QM properties learned from a set of reference QM calculations. Accordingly, hybrid QM/MM simulations can be accelerated by replacement of expensive QM calculations with efficient MLP energy predictions. At the same time, alchemical free-energy perturbations (FEP) remain unachievable at the QM level of theory. In this work, we extend the capabilities of the Buffer Region Neural Network (BuRNN) QM/MM scheme toward FEP. BuRNN introduces a buffer region that experiences full electronic polarization by the QM region to minimize artifacts at the QM/MM interface. An MLP is used to predict the energies for the QM region and its interactions with the buffer region. Furthermore, BuRNN allows us to implement FEP directly into the MLP Hamiltonian. Here, we describe the alchemical change from methanol to methane in water at the MLP/MM level as a proof of concept.
引用
收藏
页码:863 / 869
页数:7
相关论文
共 46 条
[1]  
Anstine D., 2024, Chemistry, V20, DOI [https://doi.org/10.26434/chemrxiv-2023-296ch-v3, DOI 10.26434/CHEMRXIV-2023-296CH-V3]
[2]   Hybrid models for combined quantum mechanical and molecular mechanical approaches [J].
Bakowies, D ;
Thiel, W .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (25) :10580-10594
[3]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[4]   Four Generations of High-Dimensional Neural Network Potentials [J].
Behler, Joerg .
CHEMICAL REVIEWS, 2021, 121 (16) :10037-10072
[5]   Constructing high-dimensional neural network potentials: A tutorial review [J].
Behler, Joerg .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (16) :1032-1050
[6]   SOLVATION THERMODYNAMICS OF NONIONIC SOLUTES [J].
BENNAIM, A ;
MARCUS, Y .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (04) :2016-2027
[7]   Machine Learning in QM/MM Molecular Dynamics Simulations of Condensed-Phase Systems [J].
Boeselt, Lennard ;
Thuerlemann, Moritz ;
Riniker, Sereina .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (05) :2641-2658
[8]   Polarizable embedding QM/MM: the future gold standard for complex (bio)systems? [J].
Bondanza, Mattia ;
Nottoli, Michele ;
Cupellini, Lorenzo ;
Lipparini, Filippo ;
Mennucci, Benedetta .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (26) :14433-14448
[9]   Mixed Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulations of Biological Systems in Ground and Electronically Excited States [J].
Brunk, Elizabeth ;
Rothlisberger, Ursula .
CHEMICAL REVIEWS, 2015, 115 (12) :6217-6263
[10]   GROUP CONTRIBUTIONS TO THE THERMODYNAMIC PROPERTIES OF NON-IONIC ORGANIC SOLUTES IN DILUTE AQUEOUS-SOLUTION [J].
CABANI, S ;
GIANNI, P ;
MOLLICA, V ;
LEPORI, L .
JOURNAL OF SOLUTION CHEMISTRY, 1981, 10 (08) :563-595