Chevalley groups over Z: a representation-theoretic approach

被引:0
作者
Ali, Abid [1 ]
Carbone, Lisa [2 ]
Murray, Scott H. [2 ]
机构
[1] Univ Saskatchewan, Dept Math & Stat, McLean Hall, Saskatoon, SK S7N 5E6, Canada
[2] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
关键词
Chevalley group; Integrality; Representation theory; KAC-MOODY GROUPS;
D O I
10.1007/s40879-024-00800-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G(Q) be a simply connected Chevalley group over Q corresponding to a simple Lie algebra g over C. Let V be a finite-dimensional faithful highest weight g-module and let VZ be a Chevalley Z-form of V. Let Gamma(Z) be the subgroup of G( Q) that preserves VZ and let G(Z) be the group of Z-points of G(Q). Then G(Q) is integral if G(Z) = Gamma(Z). Chevalley's original work constructs a scheme-theoretic integral form of G(Q) which equals Gamma(Z). Here we give a representation-theoretic proof of integrality of G(Q) using only the action of G(Q) on V, rather than the language of group schemes. We discuss the challenges and open problems that arise in trying to extend this to a proof of integrality for Kac-Moody groups over Q.
引用
收藏
页数:33
相关论文
共 15 条
[1]  
Ali A, 2024, J LIE THEORY, V34, P453
[2]   Presentation of affine Kac-Moody groups over rings [J].
Allcock, Daniel .
ALGEBRA & NUMBER THEORY, 2016, 10 (03) :533-556
[3]  
Artin M., 1966, SEMINAIRE GEOMETRIE
[4]  
Bourbaki N., 2005, Elements of Mathematics (Berlin)
[5]  
Carter R., 1993, Finite groups of Lie type
[6]  
Chevalley C., 2005, Collected Works, V3
[7]  
Chevalley C., 1955, Tohoku Math. J, V7, P14
[8]  
Cohen AM, 2004, MATH COMPUT, V73, P1477
[9]  
Garland H., 1980, I HAUTES ETUDES SCI, P5
[10]  
Humphreys J.E., 1972, INTRO LIE ALGEBRAS R