Dual-Scale Temporal Dependency Learning for Unsupervised Video Anomaly Detection

被引:0
作者
Li, Xu [1 ]
Wang, Xue [1 ]
Du, Zexing [1 ]
Wang, Qing [1 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Peoples R China
来源
PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT X | 2025年 / 15040卷
关键词
Video anomaly detection; Unsupervised learning; Long temporal dependency; Frame reconstruction;
D O I
10.1007/978-981-97-8792-0_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Video anomaly detection plays an increasingly crucial role in intelligent surveillance systems. Inspired by previous unsupervised methods, this paper focuses on detecting frame-level anomalies with long-term temporal dependencies. To this end, we propose a dual-scale temporal dependency learning method for video anomaly detection model, which consists of two main modules: a single-frame reconstruction module and a multi-frame feature enhancement module, processed end-to-end without relying on any pre-trained models. To validate the proposed approach, we introduce a new Elevator dataset containing various types of remote temporal dependency anomalies. Experimental results on the self-constructed Elevator dataset and two benchmarks demonstrate the effectiveness of our proposed approach.
引用
收藏
页码:284 / 298
页数:15
相关论文
共 50 条
  • [41] Enhancing Video Anomaly Detection Using a Transformer Spatiotemporal Attention Unsupervised Framework for Large Datasets
    Habeb, Mohamed H.
    Salama, May
    Elrefaei, Lamiaa A.
    ALGORITHMS, 2024, 17 (07)
  • [42] A temporal dependency preserving approach for anomaly detection on multivariate time series
    Seif-Eddine Benkabou
    Khalid Benabdeslem
    Dou El Kefel Mansouri
    Souleyman Chaib
    Amin Mesmoudi
    Allel Hadjali
    World Wide Web, 2025, 28 (3)
  • [43] Video anomaly detection based on spatio-temporal relationships among objects
    Wang, Yang
    Liu, Tianying
    Zhou, Jiaogen
    Guan, Jihong
    NEUROCOMPUTING, 2023, 532 : 141 - 151
  • [44] Transformer Based Sptial-Temporal Extraction Model for Video Anomaly Detection
    Wang, Zhiqiang
    Gu, Xiaojing
    Gu, Xingsheng
    2024 8TH INTERNATIONAL CONFERENCE ON ROBOTICS, CONTROL AND AUTOMATION, ICRCA 2024, 2024, : 370 - 374
  • [45] LEARNING TASK-SPECIFIC REPRESENTATION FOR VIDEO ANOMALY DETECTION WITH SPATIAL-TEMPORAL ATTENTION
    Liu, Yang
    Liu, Jing
    Zhu, Xiaoguang
    Wei, Donglai
    Huang, Xiaohong
    Song, Liang
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2190 - 2194
  • [46] Weakly Supervised Video Anomaly Detection via Transformer-Enabled Temporal Relation Learning
    Zhang, Dasheng
    Huang, Chao
    Liu, Chengliang
    Xu, Yong
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1197 - 1201
  • [47] Anomaly Detection in Vessel Sensors Data with Unsupervised Learning Technique
    Handayani, Melia Putri
    Antariksa, Gian
    Lee, Jihwan
    2021 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC), 2021,
  • [48] Implicit Field Learning for Unsupervised Anomaly Detection in Medical Images
    Marimont, Sergio Naval
    Tarroni, Giacomo
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT II, 2021, 12902 : 189 - 198
  • [49] Anomaly Detection in Blockchain Networks Using Unsupervised Learning: A Survey
    Cholevas, Christos
    Angeli, Eftychia
    Sereti, Zacharoula
    Mavrikos, Emmanouil
    Tsekouras, George E.
    ALGORITHMS, 2024, 17 (05)
  • [50] Learning Causality-inspired Representation Consistency for Video Anomaly Detection
    Liu, Yang
    Xia, Zhaoyang
    Zhao, Mengyang
    Wei, Donglai
    Wang, Yuzheng
    Liu, Siao
    Ju, Bobo
    Fang, Gaoyun
    Liu, Jing
    Song, Liang
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 203 - 212