Dual-Scale Temporal Dependency Learning for Unsupervised Video Anomaly Detection

被引:0
作者
Li, Xu [1 ]
Wang, Xue [1 ]
Du, Zexing [1 ]
Wang, Qing [1 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Peoples R China
来源
PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT X | 2025年 / 15040卷
关键词
Video anomaly detection; Unsupervised learning; Long temporal dependency; Frame reconstruction;
D O I
10.1007/978-981-97-8792-0_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Video anomaly detection plays an increasingly crucial role in intelligent surveillance systems. Inspired by previous unsupervised methods, this paper focuses on detecting frame-level anomalies with long-term temporal dependencies. To this end, we propose a dual-scale temporal dependency learning method for video anomaly detection model, which consists of two main modules: a single-frame reconstruction module and a multi-frame feature enhancement module, processed end-to-end without relying on any pre-trained models. To validate the proposed approach, we introduce a new Elevator dataset containing various types of remote temporal dependency anomalies. Experimental results on the self-constructed Elevator dataset and two benchmarks demonstrate the effectiveness of our proposed approach.
引用
收藏
页码:284 / 298
页数:15
相关论文
共 50 条
  • [31] Unsupervised representation learning and anomaly detection in ECG sequences
    Pereira, Joao
    Silveira, Margarida
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2019, 22 (04) : 389 - 407
  • [32] Semantic-driven dual consistency learning for weakly supervised video anomaly detection
    Su, Yong
    Tan, Yuyu
    An, Simin
    Xing, Meng
    Feng, Zhiyong
    PATTERN RECOGNITION, 2025, 157
  • [33] Dual GroupGAN: An unsupervised four-competitor (2V2) approach for video anomaly detection
    Sun, Zhe
    Wang, Panpan
    Zheng, Wang
    Zhang, Meng
    PATTERN RECOGNITION, 2024, 153
  • [34] Video anomaly detection with spatio-temporal dissociation
    Chang, Yunpeng
    Tu, Zhigang
    Xie, Wei
    Luo, Bin
    Zhang, Shifu
    Sui, Haigang
    Yuan, Junsong
    PATTERN RECOGNITION, 2022, 122
  • [35] Perceptual metric learning for video anomaly detection
    Ramachandra, Bharathkumar
    Jones, Michael
    Vatsavai, Ranga Raju
    MACHINE VISION AND APPLICATIONS, 2021, 32 (03)
  • [36] Spatio-Temporal AutoEncoder for Video Anomaly Detection
    Zhao, Yiru
    Deng, Bing
    Shen, Chen
    Liu, Yao
    Lu, Hongtao
    Hua, Xian-Sheng
    PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 1933 - 1941
  • [37] Normality Learning in Multispace for Video Anomaly Detection
    Zhang, Yu
    Nie, Xiushan
    He, Rundong
    Chen, Meng
    Yin, Yilong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (09) : 3694 - 3706
  • [38] Video anomaly detection guided by clustering learning
    Qiu, Shaoming
    Ye, Jingfeng
    Zhao, Jiancheng
    He, Lei
    Liu, Liangyu
    E, Bicong
    Huang, Xinchen
    PATTERN RECOGNITION, 2024, 153
  • [39] Perceptual metric learning for video anomaly detection
    Bharathkumar Ramachandra
    Michael Jones
    Ranga Raju Vatsavai
    Machine Vision and Applications, 2021, 32
  • [40] Memory-guided representation matching for unsupervised video anomaly detection
    Tao, Yiran
    Hu, Yaosi
    Chen, Zhenzhong
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 101