Dual-Scale Temporal Dependency Learning for Unsupervised Video Anomaly Detection

被引:0
|
作者
Li, Xu [1 ]
Wang, Xue [1 ]
Du, Zexing [1 ]
Wang, Qing [1 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Peoples R China
来源
PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT X | 2025年 / 15040卷
关键词
Video anomaly detection; Unsupervised learning; Long temporal dependency; Frame reconstruction;
D O I
10.1007/978-981-97-8792-0_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Video anomaly detection plays an increasingly crucial role in intelligent surveillance systems. Inspired by previous unsupervised methods, this paper focuses on detecting frame-level anomalies with long-term temporal dependencies. To this end, we propose a dual-scale temporal dependency learning method for video anomaly detection model, which consists of two main modules: a single-frame reconstruction module and a multi-frame feature enhancement module, processed end-to-end without relying on any pre-trained models. To validate the proposed approach, we introduce a new Elevator dataset containing various types of remote temporal dependency anomalies. Experimental results on the self-constructed Elevator dataset and two benchmarks demonstrate the effectiveness of our proposed approach.
引用
收藏
页码:284 / 298
页数:15
相关论文
共 50 条
  • [21] Unsupervised Learning for Anomaly Detection of Electric Motors
    Son, Jonghwan
    Kim, Chayoung
    Jeong, Minjoong
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2022, 23 (04) : 421 - 427
  • [22] Explainable Action-Recognition Based Approach for Unsupervised Video Anomaly Detection
    Yang, Hui
    Khouadjia, Mostepha
    Seghouani, Nacera
    Ma, Yue
    Delmas, Serge
    ADVANCES IN VISUAL COMPUTING, ISVC 2024, PT I, 2025, 15046 : 182 - 195
  • [23] Advancing unsupervised anomaly detection with normalizing flow and multi-scale ensemble learning
    Campos-Romero, Miguel
    Carranza-Garcia, Manuel
    Riquelme, Jose C.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 137
  • [24] Unsupervised Video Anomaly Detection with Diffusion Models Conditioned on Compact Motion Representations
    Tur, Anil Osman
    Dall'Asen, Nicola
    Beyan, Cigdem
    Ricci, Elisa
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2023, PT II, 2023, 14234 : 49 - 62
  • [25] An informative dual ForkNet for video anomaly detection
    Li, Hongjun
    Wang, Yunlong
    Wang, Yating
    Chen, Junjie
    NEURAL NETWORKS, 2024, 179
  • [26] A Hybrid Deep Learning Framework for Unsupervised Anomaly Detection in Multivariate Spatio-Temporal Data
    Karadayi, Yildiz
    Aydin, Mehmet N.
    Ogrenci, A. Selcuk
    APPLIED SCIENCES-BASEL, 2020, 10 (15):
  • [27] Bidirectional Spatio-Temporal Feature Learning With Multiscale Evaluation for Video Anomaly Detection
    Zhong, Yuanhong
    Chen, Xia
    Hu, Yongting
    Tang, Panliang
    Ren, Fan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (12) : 8285 - 8296
  • [28] Weakly-supervised video anomaly detection via temporal resolution feature learning
    Shengjun Peng
    Yiheng Cai
    Zijun Yao
    Meiling Tan
    Applied Intelligence, 2023, 53 : 30607 - 30625
  • [29] Coincident learning for unsupervised anomaly detection of scientific instruments
    Humble, Ryan
    Zhang, Zhe
    OShea, Finn
    Darve, Eric
    Ratner, Daniel
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (03):
  • [30] Weakly-supervised video anomaly detection via temporal resolution feature learning
    Peng, Shengjun
    Cai, Yiheng
    Yao, Zijun
    Tan, Meiling
    APPLIED INTELLIGENCE, 2023, 53 (24) : 30607 - 30625