Dual-Scale Temporal Dependency Learning for Unsupervised Video Anomaly Detection

被引:0
|
作者
Li, Xu [1 ]
Wang, Xue [1 ]
Du, Zexing [1 ]
Wang, Qing [1 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Peoples R China
来源
PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT X | 2025年 / 15040卷
关键词
Video anomaly detection; Unsupervised learning; Long temporal dependency; Frame reconstruction;
D O I
10.1007/978-981-97-8792-0_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Video anomaly detection plays an increasingly crucial role in intelligent surveillance systems. Inspired by previous unsupervised methods, this paper focuses on detecting frame-level anomalies with long-term temporal dependencies. To this end, we propose a dual-scale temporal dependency learning method for video anomaly detection model, which consists of two main modules: a single-frame reconstruction module and a multi-frame feature enhancement module, processed end-to-end without relying on any pre-trained models. To validate the proposed approach, we introduce a new Elevator dataset containing various types of remote temporal dependency anomalies. Experimental results on the self-constructed Elevator dataset and two benchmarks demonstrate the effectiveness of our proposed approach.
引用
收藏
页码:284 / 298
页数:15
相关论文
共 50 条
  • [1] Learning a multi-cluster memory prototype for unsupervised video anomaly detection
    Wu, Yuntao
    Zeng, Kun
    Li, Zuoyong
    Peng, Zhonghua
    Chen, Xiaobo
    Hu, Rong
    INFORMATION SCIENCES, 2025, 686
  • [2] Learning Anomalies with Normality Prior for Unsupervised Video Anomaly Detection
    Shi, Haoyue
    Wang, Le
    Zhou, Sanping
    Hua, Gang
    Tang, Wei
    COMPUTER VISION - ECCV 2024, PT VI, 2025, 15064 : 163 - 180
  • [3] EOGT: Video Anomaly Detection with Enhanced Object Information and Global Temporal Dependency
    Pi, Ruoyan
    Wu, Peng
    He, Xiangteng
    Peng, Yuxin
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (10)
  • [4] Normal Spatio-Temporal Information Enhance for Unsupervised Video Anomaly Detection
    Wang, Jun
    Jia, Di
    Huang, Ziqing
    Zhang, Miaohui
    Ren, Xing
    NEURAL PROCESSING LETTERS, 2023, 55 (08) : 10727 - 10745
  • [5] Normal Spatio-Temporal Information Enhance for Unsupervised Video Anomaly Detection
    Jun Wang
    Di Jia
    Ziqing Huang
    Miaohui Zhang
    Xing Ren
    Neural Processing Letters, 2023, 55 : 10727 - 10745
  • [6] Anomaly detection in manufacturing systems with temporal networks and unsupervised machine learning
    Mattera, Giulio
    Mattera, Raffaele
    Vespoli, Silvestro
    Salatiello, Emma
    COMPUTERS & INDUSTRIAL ENGINEERING, 2025, 203
  • [7] An unsupervised video anomaly detection method via Optical Flow decomposition and Spatio-Temporal feature learning
    Fan, Jin
    Ji, Yuxiang
    Wu, Huifeng
    Ge, Yan
    Sun, Danfeng
    Wu, Jia
    PATTERN RECOGNITION LETTERS, 2024, 185 : 239 - 246
  • [8] Learning Graph Enhanced Spatial-Temporal Coherence for Video Anomaly Detection
    Cheng, Kai
    Liu, Yang
    Zeng, Xinhua
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 314 - 318
  • [9] A New Unsupervised Video Anomaly Detection Using Multi-Scale Feature Memorization and Multipath Temporal Information Prediction
    Taghinezhad, Neda
    Yazdi, Mehran
    IEEE ACCESS, 2023, 11 : 9295 - 9310
  • [10] Learning dual updatable memory modules for video anomaly detection
    Zhang, Liang
    Li, Shifeng
    Cheng, Yan
    Luo, Xi
    Liu, Xiaoru
    MULTIMEDIA SYSTEMS, 2025, 31 (01)