Multiobjective Multitask Optimization With Multiple Knowledge Types and Transfer Adaptation

被引:14
作者
Li, Yanchi [1 ]
Gong, Wenyin [1 ,2 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, State Key Lab Intelligent Mfg Equipment & Technol, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
multiobjective multitask optimization (MO-MTO); Evolutionary multitasking (EMT); multiple knowledge types; transfer adaptation; DIFFERENTIAL EVOLUTION; ALGORITHM;
D O I
10.1109/TEVC.2024.3353319
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Evolutionary multitasking (EMT) exploits the correlation among different tasks to help handle them through knowledge transfer (KT) techniques in evolutionary algorithms. In this area, multiobjective multitask optimization (MO-MTO) utilizes EMT to solve multiple multiobjective optimization tasks simultaneously. The key to addressing MO-MTO problems (MO-MTOPs) is to transfer appropriate knowledge among optimization tasks to assist the multiobjective evolutionary process. Both the type and the amount of knowledge can significantly affect the KT process. To achieve better KT behavior, we propose a multiple knowledge types and transfer adaptation (MKTA) framework for handling MO-MTOPs. The MKTA framework incorporates multiple types of knowledge in order to obtain comprehensive KT performance. It also provides transfer adaptation strategies to control: 1) the type of knowledge and 2) the amount of knowledge for KT via parameter adaptation approaches, thereby mitigating negative KT. Furthermore, we propose an evolution-path-model-based knowledge type and incorporate the existing unified-search-space-based knowledge type to form the knowledge pool for MKTA. Finally, the MKTA framework is coupled with a ranking-based differential evolution operator to constitute the complete algorithm MTDE-MKTA. In the experimental study, MTDE-MKTA outperformed ten advanced algorithms on 39 benchmark MO-MTOPs and six groups of realworld application problems.
引用
收藏
页码:205 / 216
页数:12
相关论文
共 57 条
[11]   Solving Generalized Vehicle Routing Problem With Occasional Drivers via Evolutionary Multitasking [J].
Feng, Liang ;
Zhou, Lei ;
Gupta, Abhishek ;
Zhong, Jinghui ;
Zhu, Zexuan ;
Tan, Kay-Chen ;
Qin, Kai .
IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (06) :3171-3184
[12]   Evolutionary Multitasking via Explicit Autoencoding [J].
Feng, Liang ;
Zhou, Lei ;
Zhong, Jinghui ;
Gupta, Abhishek ;
Ong, Yew-Soon ;
Tan, Kay-Chen ;
Qin, A. K. .
IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (09) :3457-3470
[13]   Multiobjective Multitasking Optimization With Subspace Distribution Alignment and Decision Variable Transfer [J].
Gao, Weifeng ;
Cheng, Jiangli ;
Gong, Maoguo ;
Li, Hong ;
Xie, Jin .
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2022, 6 (04) :818-827
[14]   Differential Evolution With Ranking-Based Mutation Operators [J].
Gong, Wenyin ;
Cai, Zhihua .
IEEE TRANSACTIONS ON CYBERNETICS, 2013, 43 (06) :2066-2081
[15]   Multiobjective Multifactorial Optimization in Evolutionary Multitasking [J].
Gupta, Abhishek ;
Ong, Yew-Soon ;
Feng, Liang ;
Tan, Kay Chen .
IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (07) :1652-1665
[16]   Multifactorial Evolution: Toward Evolutionary Multitasking [J].
Gupta, Abhishek ;
Ong, Yew-Soon ;
Feng, Liang .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2016, 20 (03) :343-357
[17]   Multitask Particle Swarm Optimization With Dynamic On-Demand Allocation [J].
Han, Honggui ;
Bai, Xing ;
Hou, Ying ;
Qiao, Junfei .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (04) :1015-1026
[18]  
Hashimoto R., 2018, P GEN EV COMP C CO G, P1894, DOI DOI 10.1145/3205651.3208228
[19]   Covariance matrix adaptation for multi-objective optimization [J].
Igel, Christian ;
Hansen, Nikolaus ;
Roth, Stefan .
EVOLUTIONARY COMPUTATION, 2007, 15 (01) :1-28
[20]  
Ishibuchi Hisao, 2019, Evolutionary Multi-Criterion Optimization. 10th International Conference, EMO 2019. Proceedings: Lecture Notes in Computer Science (LNCS 11411), P332, DOI 10.1007/978-3-030-12598-1_27