Multiobjective Multitask Optimization With Multiple Knowledge Types and Transfer Adaptation

被引:10
作者
Li, Yanchi [1 ]
Gong, Wenyin [1 ,2 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, State Key Lab Intelligent Mfg Equipment & Technol, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
multiobjective multitask optimization (MO-MTO); Evolutionary multitasking (EMT); multiple knowledge types; transfer adaptation; ALGORITHM;
D O I
10.1109/TEVC.2024.3353319
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Evolutionary multitasking (EMT) exploits the correlation among different tasks to help handle them through knowledge transfer (KT) techniques in evolutionary algorithms. In this area, multiobjective multitask optimization (MO-MTO) utilizes EMT to solve multiple multiobjective optimization tasks simultaneously. The key to addressing MO-MTO problems (MO-MTOPs) is to transfer appropriate knowledge among optimization tasks to assist the multiobjective evolutionary process. Both the type and the amount of knowledge can significantly affect the KT process. To achieve better KT behavior, we propose a multiple knowledge types and transfer adaptation (MKTA) framework for handling MO-MTOPs. The MKTA framework incorporates multiple types of knowledge in order to obtain comprehensive KT performance. It also provides transfer adaptation strategies to control: 1) the type of knowledge and 2) the amount of knowledge for KT via parameter adaptation approaches, thereby mitigating negative KT. Furthermore, we propose an evolution-path-model-based knowledge type and incorporate the existing unified-search-space-based knowledge type to form the knowledge pool for MKTA. Finally, the MKTA framework is coupled with a ranking-based differential evolution operator to constitute the complete algorithm MTDE-MKTA. In the experimental study, MTDE-MKTA outperformed ten advanced algorithms on 39 benchmark MO-MTOPs and six groups of realworld application problems.
引用
收藏
页码:205 / 216
页数:12
相关论文
共 57 条
[1]   HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization [J].
Bader, Johannes ;
Zitzler, Eckart .
EVOLUTIONARY COMPUTATION, 2011, 19 (01) :45-76
[2]   Cognizant Multitasking in Multiobjective Multifactorial Evolution: MO-MFEA-II [J].
Bali, Kavitesh Kumar ;
Gupta, Abhishek ;
Ong, Yew-Soon ;
Tan, Puay Siew .
IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (04) :1784-1796
[3]  
Bergstra J, 2012, J MACH LEARN RES, V13, P281
[4]   Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems [J].
Brest, Janez ;
Greiner, Saso ;
Boskovic, Borko ;
Mernik, Marjan ;
Zumer, Vijern .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (06) :646-657
[5]   Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review [J].
Carrasco, J. ;
Garcia, S. ;
Rueda, M. M. ;
Das, S. ;
Herrera, F. .
SWARM AND EVOLUTIONARY COMPUTATION, 2020, 54 (54)
[6]   A Multiobjective Multitask Optimization Algorithm Using Transfer Rank [J].
Chen, Hongyan ;
Liu, Hai-Lin ;
Gu, Fangqing ;
Tan, Kay Chen .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (02) :237-250
[7]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[8]   Optimal Pulsewidth Modulation for Common-Mode Voltage Elimination Scheme of Medium-Voltage Modular Multilevel Converter-Fed Open-End Stator Winding Induction Motor Drives [J].
Edpuganti, Amarendra ;
Rathore, Akshay Kumar .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (01) :848-856
[9]  
Feng L., 2021, P IEEE C EV COMP, P19
[10]  
Feng L., 2019, P IEEE C EV COMP, P10