Freeze-Thaw Imaging for Microorganism Classification Assisted with Artificial Intelligence

被引:0
作者
Xie, Han [1 ]
Zhu, Xubin [1 ]
Chen, Kaiyu [1 ]
Zhang, Zhilin [1 ]
Liu, Jinzhi [1 ]
Wang, Wenhui [1 ]
Wan, Chao [1 ]
Wang, Jieqing [1 ]
Peng, Di [1 ]
Li, Yiwei [1 ]
Chen, Peng [1 ]
Liu, Bi-Feng [1 ]
机构
[1] Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Dept Biomed Engn,Syst Biol Theme, MOE,Key Lab Biomed Photon,Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
freeze-thaw imaging; AuNPs; machinelearning; microbe; artificial intelligence; IMMUNOMAGNETIC SEPARATION; RAPID IDENTIFICATION; ARRAY; SALMONELLA; BIOSENSOR; PATHOGENS;
D O I
10.1021/acsnano.4c16949
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fast and cost-effective microbial classification is crucial for clinical diagnosis, environmental monitoring, and food safety. However, traditional methods encounter challenges including intricate procedures, skilled personnel needs, and sophisticated instrumentations. Here, we propose a cost-effective microbe classification system, also termed freeze-thaw-induced floating pattern of AuNPs (FTFPA), coupled with artificial intelligence, which is capable of identifying microbes at a cost of $0.0023 per sample. Specifically, FTFPA utilizes AuNPs for coincubation with microbes, resulting in distinct patterns upon freeze-thawing due to their weak interaction. These patterns are digitized to train models that distinguish nine microbes in various tasks. The positive sample detection model achieved an F1 score of 0.976 (n = 194), while the multispecies classification task reached a macro F1 score of 0.859 (n = 1728). To address scalability and lightweight requirements across diverse classification scenarios, we categorized microbes based on species classification levels. The macro F1 score of the hierarchical model (n = 5184), order level model (n = 5184), Enterobacteriales level model (n = 2550), and Bacillales level model (n = 1974) was 0.854, 0.907, 0.958, and 0.843. In summary, our method is user-friendly, requiring only simple equipment, is easy to operate, and convenient, providing a platform for microbial identification.
引用
收藏
页码:8162 / 8175
页数:14
相关论文
共 55 条
  • [11] Wang X., Li H., Yang J., Wu C., Chen M., Wang J., Yang T., Chemical Nose Strategy with Metabolic Labeling and “Antibiotic-Responsive Spectrum” Enables Accurate and Rapid Pathogen Identification, Anal. Chem., 96, 1, pp. 427-436, (2024)
  • [12] Chen W.W., Li M., Chen Z.K., Yan Z.J., Li J.H., Guo L.H., Ding C.P., Huang Y.J., Dual enzyme induced colorimetric sensor for simultaneous identifying multiple pathogens, Biosens. Bioelectron., 234, (2023)
  • [13] Yang M., Liu X., Luo Y., Pearlstein A.J., Wang S., Dillow H., Reed K., Jia Z., Sharma A., Zhou B., Pearlstein D., Yu H., Zhang B., Machine learning-enabled non-destructive paper chromogenic array detection of multiplexed viable pathogens on food, Nature Food, 2, 2, pp. 110-117, (2021)
  • [14] Lin X.D., Zhao M.Y., Peng T., Zhang P., Shen R., Jia Y.W., Detection and discrimination of pathogenic bacteria with nanomaterials-based optical biosensors: A review, Food Chem., 426, (2023)
  • [15] Su S., Sun Q., Gu X.D., Xu Y.Q., Shen J.L., Zhu D., Chao J., Fan C.H., Wang L.H., Two-dimensional nanomaterials for biosensing applications, TrAC, Trends Anal. Chem., 119, (2019)
  • [16] Li Y.C., Cui Z.W., Wang Z.Q., Shi L.H., Zhuo J.C., Yan S.X., Ji Y.W., Wang Y.R., Zhang D.H., Wang J.L., Machine-Learning-Assisted Aggregation-Induced Emissive Nanosilicon-Based Sensor Array for Point-of-Care Identification of Multiple Foodborne Pathogens, Anal. Chem., 96, 17, pp. 6588-6598, (2024)
  • [17] Yang M.H., Zhang M., Jia M.Y., Optical sensor arrays for the detection and discrimination of natural products, Nat. Prod Rep, 40, 3, pp. 628-645, (2023)
  • [18] Kinoshita T., Ishiki K., Nguyen D.Q., Shiigi H., Nagaoka T., Real-Time Evaluation of Bacterial Viability Using Gold Nanoparticles, Anal. Chem., 90, 6, pp. 4098-4103, (2018)
  • [19] Priyadarshi N., Ambule M.D., Kaushal S., Kumar A., Sagar P., Srivastava A.K., Singhal N.K., Nanoglycocluster based diagnostic platform for colorimetric detection of bacteria
  • [20] A comparative study analysing the effect of AuNPs size, linker length, and glycan diversity, Biosens. Bioelectron., 201, (2022)