Freeze-Thaw Imaging for Microorganism Classification Assisted with Artificial Intelligence

被引:0
作者
Xie, Han [1 ]
Zhu, Xubin [1 ]
Chen, Kaiyu [1 ]
Zhang, Zhilin [1 ]
Liu, Jinzhi [1 ]
Wang, Wenhui [1 ]
Wan, Chao [1 ]
Wang, Jieqing [1 ]
Peng, Di [1 ]
Li, Yiwei [1 ]
Chen, Peng [1 ]
Liu, Bi-Feng [1 ]
机构
[1] Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Dept Biomed Engn,Syst Biol Theme, MOE,Key Lab Biomed Photon,Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
freeze-thaw imaging; AuNPs; machinelearning; microbe; artificial intelligence; IMMUNOMAGNETIC SEPARATION; RAPID IDENTIFICATION; ARRAY; SALMONELLA; BIOSENSOR; PATHOGENS;
D O I
10.1021/acsnano.4c16949
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fast and cost-effective microbial classification is crucial for clinical diagnosis, environmental monitoring, and food safety. However, traditional methods encounter challenges including intricate procedures, skilled personnel needs, and sophisticated instrumentations. Here, we propose a cost-effective microbe classification system, also termed freeze-thaw-induced floating pattern of AuNPs (FTFPA), coupled with artificial intelligence, which is capable of identifying microbes at a cost of $0.0023 per sample. Specifically, FTFPA utilizes AuNPs for coincubation with microbes, resulting in distinct patterns upon freeze-thawing due to their weak interaction. These patterns are digitized to train models that distinguish nine microbes in various tasks. The positive sample detection model achieved an F1 score of 0.976 (n = 194), while the multispecies classification task reached a macro F1 score of 0.859 (n = 1728). To address scalability and lightweight requirements across diverse classification scenarios, we categorized microbes based on species classification levels. The macro F1 score of the hierarchical model (n = 5184), order level model (n = 5184), Enterobacteriales level model (n = 2550), and Bacillales level model (n = 1974) was 0.854, 0.907, 0.958, and 0.843. In summary, our method is user-friendly, requiring only simple equipment, is easy to operate, and convenient, providing a platform for microbial identification.
引用
收藏
页码:8162 / 8175
页数:14
相关论文
共 55 条
  • [1] Narunsky-Haziza L., Sepich-Poore G.D., Livyatan I., Asraf O., Martino C., Nejman D., Gavert N., Stajich J.E., Amit G., Gonzalez A., Wandro S., Perry G., Ariel R., Meltser A., Shaffer J.P., Zhu Q., Balint-Lahat N., Barshack I., Dadiani M., Gal-Yam E.N., Patel S.P., Bashan A., Swafford A.D., Pilpel Y., Knight R., Straussman R., Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions, Cell, 185, 20, pp. 3789-3806e17, (2022)
  • [2] Fernandes M.R., Aggarwal P., Costa R.G.E., Cole A.M., Trinchieri G., Targeting the gut microbiota for cancer therapy, Nat. Rev. Cancer, 22, 12, pp. 703-722, (2022)
  • [3] Baumler A.J., Sperandio V., Interactions between the microbiota and pathogenic bacteria in the gut, Nature, 535, 7610, pp. 85-93, (2016)
  • [4] Martens E.C., Neumann M., Desai M.S., Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier, Nat. Rev. Microbiol, 16, 8, pp. 457-470, (2018)
  • [5] Huang R., Cai X., Du J., Lian J., Hui P., Gu M., Li F., Wang J., Chen W., Bioinspired Plasmonic Nanosensor for on-Site Antimicrobial Susceptibility Testing in Urine Samples, ACS Nano, 16, 11, pp. 19229-19239, (2022)
  • [6] Qin Y.-F., Lu X.-Y., Shi Z., Huang Q.-S., Wang X., Ren B., Cui L., Deep Learning-Enabled Raman Spectroscopic Identification of Pathogen-Derived Extracellular Vesicles and the Biogenesis Process, Anal. Chem., 94, 36, pp. 12416-12426, (2022)
  • [7] AbdElFatah T., Jalali M., Yedire S.G., Hosseini I.I., Mata C.D., Khan H., Hamidi S.V., Jeanne O., Moakhar R.S., McLean M., Patel D., Wang Z., McKay G., Yousefi M., Nguyen D., Vidal S.M., Liang C., Mahshid S., Nanoplasmonic amplification in microfluidics enables accelerated colorimetric quantification of nucleic acid biomarkers from pathogens, Nat. Nanotechnol., 18, 8, pp. 922-932, (2023)
  • [8] Weis C.V., Jutzeler C.R., Borgwardt K., Machine learning for microbial identification and antimicrobial susceptibility testing on MALDI-TOF mass spectra: a systematic review, Clin Microbiol Infec, 26, 10, pp. 1310-1317, (2020)
  • [9] Chalupova J., Raus M., Sedlarova M., Sebela M., Identification of fungal microorganisms by MALDI-TOF mass spectrometry, Biotechnology Advances, 32, 1, pp. 230-241, (2014)
  • [10] Claydon M.A., Davey S.N., Edwards-Jones V., Gordon D.B., The rapid identification of intact microorganisms using mass spectrometry, Nat. Biotechnol., 14, 11, pp. 1584-1586, (1996)