Isomorphously substituted cerium induced oxygen vacancy and medium basicity in Ni/fibrous silica catalyst for superior low-temperature CO2 methanation

被引:1
|
作者
Aziz, M. A. [2 ]
Jalil, A. A. [1 ,2 ]
Hassan, N. S. [2 ]
Bahari, M. B. [2 ]
Abdullah, T. A. T. [1 ,2 ]
Jusoh, N. W. C. [3 ]
Nagao, Y. [4 ]
Aoki, K. [4 ]
Nishimura, S. [4 ]
Saravanan, Rajendran [5 ]
机构
[1] Inst Future Energy, Ctr Hydrogen Energy, Johor Baharu 81310, Johor, Malaysia
[2] Univ Teknol Malaysia, Fac Chem & Energy Engn, Johor Baharu 81310, Johor, Malaysia
[3] Univ Teknol Malaysia, Malaysia Japan Int Inst Technol, Dept Chem & Environm Engn, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
[4] Japan Adv Inst Sci & Technol, Sch Mat Sci, 1-1 Asahidai, Nomi City, Ishikawa 9231292, Japan
[5] Univ Tarapaca, Fac Engn, Dept Mech Engn, Avda Gen Velasquez, Arica 1775, Chile
关键词
Isomorphous substitution; Cerium; Basicity; CO; 2; methanation; Oxygen vacancy; NANOPARTICLES; NI; PERFORMANCE; NI/AL2O3; OXIDE; FE; LA; CE;
D O I
10.1016/j.apcata.2024.120019
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A series of promoters (Ce, La, Mo, and Zr) was introduced into the Ni/CHE-SM catalyst by using the impregnation method and tested for CO2 methanation. Among these, Ni-Ce/CHE-SM possessed a high CO2 conversion of 80 % at 250 degrees C, signifying its potential at low temperature. The superior performance of Ni-Ce/CHE-SM was attributed to the formation of Si-O-Ni and Si-O-Ce species, as confirmed by FTIR-KBr analysis. XPS and CO2-TPD analyses revealed an abundance of oxygen vacancies existed within Ni-Ce/CHE-SM, resulting in enhancement of basicity amount and strength. In addition, Raman analysis showed the existence of three and four silica member rings which was believed that the Si atom be substituted with the Ce atom, thus contributing to create more oxygen vacancies. Hence, additional active sites were provided which enhance the adsorption of reactant molecules and improve the production of CH4, thus emphasizing the greater potential of Ni-Ce/CHE-SM in CO2 methanation application.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Oxygen vacancy-dependent low-temperature performance of Ni/CeO2 in CO2 methanation
    Liao, Luliang
    Wang, Kunlei
    Liao, Guangfu
    Nawaz, Muhammad Asif
    Liu, Kun
    CATALYSIS SCIENCE & TECHNOLOGY, 2024, 14 (22) : 6537 - 6549
  • [2] Constructing highly dispersed Ni based catalysts supported on fibrous silica nanosphere for low-temperature CO2 methanation
    Lv, Chufei
    Xu, Leilei
    Chen, Mindong
    Cui, Yan
    Wen, Xueying
    Wu, Cai-e
    Yang, Bo
    Wang, Fagen
    Miao, Zhichao
    Hu, Xun
    Shou, Qinghui
    FUEL, 2020, 278
  • [3] Ni/CeO2 catalysts for low-temperature CO2 methanation: Identifying effect of support morphology and oxygen vacancy
    Zhang, Yang
    Zhang, Tengfei
    Wang, Fang
    Zhu, Quanhong
    Liu, Qing
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2021, 11 (06) : 1222 - 1233
  • [4] Enhancing the low-temperature CO2 methanation over Ni/La-CeO2 catalyst: The effects of surface oxygen vacancy and basic site on the catalytic performance
    Zhang, Tengfei
    Wang, Weiwei
    Gu, Fangna
    Xu, Wenqing
    Zhang, Jianling
    Li, Zhenxing
    Zhu, Tingyu
    Xu, Guangwen
    Zhong, Ziyi
    Su, Fabing
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 312
  • [5] Enhanced Low-Temperature Activity of CO2 Methanation Over Ni/CeO2 Catalyst
    Yuan Ma
    Jiao Liu
    Mo Chu
    Junrong Yue
    Yanbin Cui
    Guangwen Xu
    Catalysis Letters, 2022, 152 : 872 - 882
  • [6] Enhanced Low-Temperature Activity of CO2 Methanation Over Ni/CeO2 Catalyst
    Ma, Yuan
    Liu, Jiao
    Chu, Mo
    Yue, Junrong
    Cui, Yanbin
    Xu, Guangwen
    CATALYSIS LETTERS, 2022, 152 (03) : 872 - 882
  • [7] Enhanced low-temperature CO2 methanation activity on plasma-prepared Ni-based catalyst
    Bian, Li
    Zhang, Li
    Xia, Rong
    Li, Zhenhua
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2015, 27 : 1189 - 1194
  • [8] Reaction Mechanism and Catalytic Impact of Ni/CeO2-x Catalyst for Low-Temperature CO2 Methanation
    Lee, Sang Moon
    Lee, Ye Hwan
    Moon, Dea Hyun
    Ahn, Jeong Yoon
    Dinh Duc Nguyen
    Chang, Soon Woong
    Kim, Sung Su
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (20) : 8656 - 8662
  • [9] Ni/CeO2 catalyst with La and Zr additives for improved low-temperature CO2 methanation efficiency
    Kaisook, Pattanapon
    Athikaphan, Pakpoom
    Nijpanich, Supinya
    Minato, Taketoshi
    Neramittagapong, Sutasinee
    Neramittagapong, Arthit
    RESULTS IN ENGINEERING, 2025, 25
  • [10] Promotion of low-temperature Ni-based CO2 methanation catalysts by LaOx confined in mesoporous silica channels
    Ma, Jun
    Li, Shiyan
    Xu, Bing
    Chu, Wei
    Jiang, Qian
    Liu, Yuefeng
    MOLECULAR CATALYSIS, 2025, 574