Enhancing Reptile Search Algorithm Performance for the Knapsack Problem with Integration of Chaotic Map

被引:0
作者
Barrera-Garcia, Jose [1 ]
Cisternas-Caneo, Felipe [1 ]
Crawford, Broderick [1 ]
Soto, Ricardo [1 ]
Becerra-Rozas, Marcelo [1 ]
Giachetti, Giovanni [2 ]
Monfroy, Eric [3 ]
机构
[1] Pontificia Univ Catolica Valparaiso, Valparaiso, Chile
[2] Univ Andres Bello, Santiago, Chile
[3] Univ Angers, LERIA, Angers, France
来源
ADVANCES IN SOFT COMPUTING, PT II, MICAI 2024 | 2025年 / 15247卷
关键词
Reptile Search Algorithm; Combinatorial Problems; Binarization Schemes; Chaotic Maps; Metaheuristics;
D O I
10.1007/978-3-031-75543-9_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study investigates the binarization process of the Reptile Search Algorithm (RSA) using chaotic maps to solve the Knapsack Problem. We evaluate RSA, Particle Swarm Optimization (PSO), and Grey Wolf Optimizer (GWO) using the S4 transfer function with four binarization strategies: standard, standard with chaotic maps, elitist, and elitist with chaotic maps. Experimental results show that standard binarization strategies, particularly RSA with standard binarization rule (STD) and RSA with standard binarization rule with a chaotic map (STD SINE), consistently outperform elitist strategies across various Knapsack problem instances. Including chaotic maps, especially the sine chaotic map, slightly improves performance. Convergence analysis reveals that standard binarization ensures steady and strong convergence, while elitist binarization accelerates convergence but may risk settling on local optima early. This research highlights the importance of selecting appropriate binarization strategies and suggests further exploration of chaotic maps to enhance the performance of metaheuristic algorithms in solving binary combinatorial optimization problems.
引用
收藏
页码:70 / 81
页数:12
相关论文
共 28 条
  • [1] An Improved Binary Grey-Wolf Optimizer With Simulated Annealing for Feature Selection
    Abdel-Basset, Mohamed
    Sallam, Karam M.
    Mohamed, Reda
    Elgendi, Ibrahim
    Munasinghe, Kumudu
    Elkomy, Osama M.
    [J]. IEEE ACCESS, 2021, 9 : 139792 - 139822
  • [2] Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer
    Abualigah, Laith
    Abd Elaziz, Mohamed
    Sumari, Putra
    Geem, Zong Woo
    Gandomi, Amir H.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2022, 191
  • [3] Chaotic gaining sharing knowledge-based optimization algorithm: an improved metaheuristic algorithm for feature selection
    Agrawal, Prachi
    Ganesh, Talari
    Mohamed, Ali Wagdy
    [J]. SOFT COMPUTING, 2021, 25 (14) : 9505 - 9528
  • [4] Normalized Mutual Information-based equilibrium optimizer with chaotic maps for wrapper-filter feature selection
    Agrawal, Utkarsh
    Rohatgi, Vasudha
    Katarya, Rahul
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2022, 207
  • [5] Continuous Metaheuristics for Binary Optimization Problems: An Updated Systematic Literature Review
    Becerra-Rozas, Marcelo
    Lemus-Romani, Jose
    Cisternas-Caneo, Felipe
    Crawford, Broderick
    Soto, Ricardo
    Astorga, Gino
    Castro, Carlos
    Garcia, Jose
    [J]. MATHEMATICS, 2023, 11 (01)
  • [6] Swarm-Inspired Computing to Solve Binary Optimization Problems: A Backward Q-Learning Binarization Scheme Selector
    Becerra-Rozas, Marcelo
    Lemus-Romani, Jose
    Cisternas-Caneo, Felipe
    Crawford, Broderick
    Soto, Ricardo
    Garcia, Jose
    [J]. MATHEMATICS, 2022, 10 (24)
  • [7] Stochastic stability analysis of particle swarm optimization with pseudo random number assignment strategy
    Chih, Mingchang
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2023, 305 (02) : 562 - 593
  • [8] Multiobjective forensic-based investigation algorithm for solving structural design problems
    Chou, Jui-Sheng
    Dinh-Nhat Truong
    [J]. AUTOMATION IN CONSTRUCTION, 2022, 134
  • [9] Chaotic Binarization Schemes for Solving Combinatorial Optimization Problems Using Continuous Metaheuristics
    Cisternas-Caneo, Felipe
    Crawford, Broderick
    Soto, Ricardo
    Giachetti, Giovanni
    Paz, Alex
    Pena Fritz, Alvaro
    [J]. MATHEMATICS, 2024, 12 (02)
  • [10] Putting Continuous Metaheuristics to Work in Binary Search Spaces
    Crawford, Broderick
    Soto, Ricardo
    Astorga, Gino
    Garcia, Jose
    Castro, Carlos
    Paredes, Fernando
    [J]. COMPLEXITY, 2017,