Compactness peaks: An astrophysical interpretation of the mass distribution of merging binary black holes

被引:0
作者
Galaudage, Shanika [1 ,2 ]
Lamberts, Astrid [1 ,2 ]
机构
[1] Univ Cote dAzur, Lab Lagrange, CNRS, Observ Cote dAzur, Bd Observ, F-06300 Nice, France
[2] Univ Cote dAzur, Observ Cote dAzur, Lab Artemis, CNRS, Bd Observ, F-06300 Nice, France
基金
美国国家科学基金会;
关键词
gravitational waves; binaries: close; stars: black holes; stars: evolution; PAIR-INSTABILITY SUPERNOVAE; GRAVITATIONAL-WAVE; BAYESIAN-INFERENCE; STELLAR EVOLUTION; MERGERS; POPULATION; IMPACT; PROGENITORS; COLLAPSE; COALESCENCES;
D O I
10.1051/0004-6361/202451654
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
With the growing number of detections of binary black hole (BBH) mergers, we are beginning to probe structure in the distribution of mass. A recent study proposes that the isolated binary evolution of stripped stars naturally gives rise to the peaks at M similar to 8 M-circle dot and 14 M-circle dot in the chirp-mass distribution and explains the dearth of black holes (BHs) in the mass range of M approximate to 10 - 12 M-circle dot. The gap in chirp mass results from an apparent gap in the component-mass distribution within m(1), m(2) approximate to 10 - 15 M-circle dot and the specific pairing of these BHs. This component-mass gap results from variation in the core compactness of the progenitor, where a drop in compactness as a function of carbon-oxygen core mass means that BHs are no longer formed from core collapse. We develop a population model motivated by this scenario to probe the structure of the component-mass distribution of two populations of BBHs: one population consisting of two peak components, representing BHs formed in the compactness peaks, and another population with a power-law component to account for any polluting events, that is, binaries that may have formed from different channels (e.g. dynamical). We perform hierarchical Bayesian inference to analyse the events from the third gravitational-wave transient catalogue (GWTC-3) with our population model. We find that there is a preference for the lower-mass peak to drop off sharply at similar to 11 M-circle dot and the upper mass peak to turn on at similar to 13 M-circle dot, in line with predictions in the literature. However, we find no clear evidence for a gap. We also find mild support for a scenario where the two populations have different spin distributions. In addition to these population results, we highlight observed events of interest that differ from the expected population distribution of compact objects formed from stripped stars.
引用
收藏
页数:12
相关论文
共 99 条
[1]   Advanced LIGO [J].
Aasi, J. ;
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. ;
Abernathy, M. R. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. ;
Affeldt, C. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Ain, A. ;
Ajith, P. ;
Alemic, A. ;
Allen, B. ;
Amariutei, D. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Araya, M. C. ;
Arceneaux, C. ;
Areeda, J. S. ;
Ashton, G. ;
Ast, S. ;
Aston, S. M. ;
Aufmuth, P. ;
Aulbert, C. ;
Aylott, B. E. ;
Babak, S. ;
Baker, P. T. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barbet, M. ;
Barclay, S. ;
Barish, B. C. ;
Barker, D. ;
Barr, B. ;
Barsotti, L. ;
Bartlett, J. ;
Barton, M. A. ;
Bartos, I. ;
Bassiri, R. ;
Batch, J. C. ;
Baune, C. ;
Behnke, B. ;
Bell, A. S. ;
Bell, C. .
CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (07)
[2]   GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Afrough, M. ;
Agarwal, B. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allen, G. ;
Allocca, A. ;
Altin, P. A. ;
Amato, A. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Angelova, S. V. ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Araya, M. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Atallah, D. V. ;
Aufmuth, P. ;
Aulbert, C. ;
AultONeal, K. ;
Austin, C. ;
Avila-Alvarez, A. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. .
PHYSICAL REVIEW LETTERS, 2017, 119 (14)
[3]   Binary Black Hole Mergers in the First Advanced LIGO Observing Run [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. ;
Barr, B. .
PHYSICAL REVIEW X, 2016, 6 (04)
[4]  
Abbott BP, 2016, LIVING REV RELATIV, V19, DOI [10.1007/lrr-2016-1, 10.1007/s41114-018-0012-9]
[5]   GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the Second Part of the Third Observing Run [J].
Abbott, R. ;
Abbott, T. D. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adhikari, N. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agarwal, D. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Akcay, S. ;
Akutsu, T. ;
Albanesi, S. ;
Allocca, A. ;
Altin, P. A. ;
Amato, A. ;
Anand, C. ;
Anand, S. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Ando, M. ;
Andrade, T. ;
Andres, N. ;
Andric, T. ;
Angelova, S., V ;
Ansoldi, S. ;
Antelis, J. M. ;
Antier, S. ;
Appert, S. ;
Arai, Koji ;
Arai, Koya ;
Arai, Y. ;
Araki, S. ;
Araya, A. ;
Araya, M. C. ;
Areeda, J. S. ;
Arene, M. ;
Aritomi, N. ;
Arnaud, N. ;
Arogeti, M. ;
Aronson, S. M. ;
Arun, K. G. .
PHYSICAL REVIEW X, 2023, 13 (04)
[6]   GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run [J].
Abbott, R. ;
Abbott, T. D. ;
Abraham, S. ;
Acernese, F. ;
Ackley, K. ;
Adams, A. ;
Adams, C. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Akcay, S. ;
Allen, G. ;
Allocca, A. ;
Altin, P. A. ;
Amato, A. ;
Anand, S. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Angelova, S., V ;
Ansoldi, S. ;
Antelis, J. M. ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Araya, M. C. ;
Areeda, J. S. ;
Arene, M. ;
Arnaud, N. ;
Aronson, S. M. ;
Arun, K. G. ;
Asali, Y. ;
Ascenzi, S. ;
Ashton, G. ;
Aston, S. M. ;
Astone, P. ;
Aubin, F. ;
Aufmuth, P. ;
AultONeal, K. ;
Austin, C. ;
Avendano, V ;
Babak, S. ;
Badaracco, F. .
PHYSICAL REVIEW X, 2021, 11 (02)
[7]  
Abbott R., 2020, Phys. Rev. D, V102, DOI [DOI 10.1103/PHYSREVD.102.043015, 10.1103/physrevd.102.043015]
[8]  
Abbott R., 2021, Astrophys. J. Lett., V913, pL7
[9]  
Abbott R., 2023, Phys. Rev. X, V13, DOI DOI 10.1103/PHYSREVX.13.011048
[10]   Advanced Virgo: a second-generation interferometric gravitational wave detector [J].
Acernese, F. ;
Agathos, M. ;
Agatsuma, K. ;
Aisa, D. ;
Allemandou, N. ;
Allocca, A. ;
Amarni, J. ;
Astone, P. ;
Balestri, G. ;
Ballardin, G. ;
Barone, F. ;
Baronick, J-P ;
Barsuglia, M. ;
Basti, A. ;
Basti, F. ;
Bauer, Th S. ;
Bavigadda, V. ;
Bejger, M. ;
Beker, M. G. ;
Belczynski, C. ;
Bersanetti, D. ;
Bertolini, A. ;
Bitossi, M. ;
Bizouard, M. A. ;
Bloemen, S. ;
Blom, M. ;
Boer, M. ;
Bogaert, G. ;
Bondi, D. ;
Bondu, F. ;
Bonelli, L. ;
Bonnand, R. ;
Boschi, V. ;
Bosi, L. ;
Bouedo, T. ;
Bradaschia, C. ;
Branchesi, M. ;
Briant, T. ;
Brillet, A. ;
Brisson, V. ;
Bulik, T. ;
Bulten, H. J. ;
Buskulic, D. ;
Buy, C. ;
Cagnoli, G. ;
Calloni, E. ;
Campeggi, C. ;
Canuel, B. ;
Carbognani, F. ;
Cavalier, F. .
CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (02)