Tuning the structural and NO2 gas sensing properties of SnO2 films via In doping

被引:0
|
作者
Addie, Ali J. [1 ]
Batros, Shatha Sh. [1 ]
Hassan, Azhar I. [2 ]
机构
[1] Sci Res Commiss, Ctr Ind Applicat & Mat Technol, Baghdad 10070, Iraq
[2] Univ Technol Iraq, Appl Sci Dept, Baghdad 10066, Iraq
关键词
Thin films; Nanostructure; Indium-doped tin dioxide; Gas sensor; SENSOR; PERFORMANCE;
D O I
10.1016/j.tsf.2025.140669
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study investigates the improvement of chemiresistive gas sensor properties in SnO2 thin films by In doping via scalable spray pyrolysis. By systematically varying the indium concentration from 0 to 7.5 at.%, we found that a doping level of 5 at.% optimally maintains crystal integrity while significantly improving the sensor performance for nitrogen dioxide (NO2), a common environmental pollutant. The In-doped sensors achieved a peak sensitivity of 109 at an operating temperature of 200 degrees C, with a rapid response time of 8 s and a recovery time of 70 s, outperforming the undoped sensors. Structural analysis showed that a 5 at.% doping reduced the grain size from 93 nm to 73 nm, which increased the surface area and improved the dynamics of gas adsorption. In addition, a reduction in surface roughness and a change in the texture coefficient T(110) were observed, indicating that the surfaces have become smoother, and the crystal growth orientations have changed, leading to an improvement in electron transport. Doping with In significantly improves the electronic structure and surface reactivity of SnO2 films. This method enables the production of highly effective NO2 sensors, which are important for air quality monitoring and environmental protection.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Characterization and NO2 gas sensing properties of spray pyrolyzed SnO2 thin films
    Kamble, Dilly L.
    Harale, Namdev S.
    Patil, Vithoba L.
    Patil, Pramod S.
    Kadam, Laxrnan D.
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2017, 127 : 38 - 46
  • [2] ZnO/SnO2 based composite heterostructure for NO2 gas sensing properties
    Er, Irmak Karaduman
    Uysal, Samet
    Ates, Aytunc
    Acar, Selim
    CERAMICS INTERNATIONAL, 2025, 51 (01) : 623 - 635
  • [3] Enhancing the NO2 gas sensing properties of rGO/SnO2 nanocomposite films by using microporous substrates
    Zhu, Xiangyi
    Guo, Yongcai
    Ren, Hao
    Gao, Chao
    Zhou, Yong
    SENSORS AND ACTUATORS B-CHEMICAL, 2017, 248 : 560 - 570
  • [4] Nanostructured SnO2 thin films for NO2 gas sensing applications
    Khuspe, G. D.
    Sakhare, R. D.
    Navale, S. T.
    Chougule, M. A.
    Kolekar, Y. D.
    Mulik, R. N.
    Pawar, R. C.
    Lee, C. S.
    Patil, V. B.
    CERAMICS INTERNATIONAL, 2013, 39 (08) : 8673 - 8679
  • [5] Influence of Mg Doping Levels on the Sensing Properties of SnO2 Films
    Bendahmane, Bouteina
    Tomic, Milena
    Touidjen, Nour El Houda
    Gracia, Isabel
    Vallejos, Stella
    Mansour, Farida
    SENSORS, 2020, 20 (07)
  • [6] A Comparative Study of Gas Sensing Properties of SnO2 and SnO2:Mo Films Grown by Magnetron Sputtering
    Chang, Wei-Che
    Lee, Shih-chin
    Qi, Xiaoding
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (07) : J245 - J250
  • [7] Sputtered SnO2/ZnO Heterostructures for Improved NO2 Gas Sensing Properties
    Sharma, Bharat
    Sharma, Ashutosh
    Joshi, Monika
    Myung, Jae-ha
    CHEMOSENSORS, 2020, 8 (03)
  • [8] Effect of platinum doping on the structural and electrical properties of SnO2 thin films
    Asar, Tarik
    Korkmaz, Burak
    Ozcelik, Suleyman
    JOURNAL OF EXPERIMENTAL NANOSCIENCE, 2016, 11 (16) : 1285 - 1306
  • [9] Enhanced NO2 gas-sensing properties of SnO2 nanorods with a TiO2 capping
    Jin, Changhyun
    Park, Sunghoon
    Kim, Hyunsu
    Ko, Taegyung
    Lee, Chongmu
    Jeong, Bong-Yong
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2012, 61 (09) : 1370 - 1375
  • [10] Influence of the aluminium doping on the physical and gas sensing properties of SnO2 for H2 gas detection
    Khudiar, Ausama, I
    Oufi, Attarid M.
    SENSORS AND ACTUATORS B-CHEMICAL, 2021, 340 (340):