Charge accumulation in carbon skeleton inducing oxygen vacancy-rich Na3V2(PO4)3 with multielectron transport property for high performance sodium ion batteries

被引:2
作者
Dong, Haodi [1 ,3 ]
Liu, Changcheng [1 ,3 ]
Huang, Que [1 ,3 ,5 ]
Guo, Li [3 ,4 ,6 ]
Chen, Yanjun [2 ,3 ]
机构
[1] North Univ China, Sch Environm & Safety Engn, Taiyuan 030051, Shanxi, Peoples R China
[2] North Univ China, Sch Mat Sci & Engn, Taiyuan 030051, Shanxi, Peoples R China
[3] Shanxi Key Lab Efficient Hydrogen Storage & Prod T, Taiyuan 030051, Shanxi, Peoples R China
[4] North Univ China, Sch Energy & Power Engn, Taiyuan 030051, Shanxi, Peoples R China
[5] Cent South Univ, Sch Resources & Safety Engn, Changsha 410010, Hunan, Peoples R China
[6] State Key Lab Coal & CBM Comining, Taiyuan, Peoples R China
关键词
Oxygen vacancy; V-O bond; V4+/V5+; Symmetric/asymmetric full battery; ELECTROCHEMICAL PERFORMANCE; THERMAL RUNAWAY; CATHODE; INTERCALATION; SUBSTITUTION; CAPACITY; STORAGE;
D O I
10.1016/j.ensm.2025.104070
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Traditional carbon-based modification methods focus on the electronic conductivity of Na3V2(PO4)3(NVP), rather than affecting its internal crystal structure. Herein, abundant C18H19ClN4(CZP) is introduced NVP to generate synergistically modified N/Cl co-doped carbon skeleton. DFT calculation illustrates after N/Cl atoms occupy C sites, charges accumulate at N/Cl site. The enriched charge is relatively attractive for O atom, which induces the formation of O vacancy inside NVP. Significantly, the offset of O atom lengthens the P-O and V-O bonds, contributing to the expansion of VO6 and PO4 framework and thus enlarging the construction frame. Confirmatively, XAFS analysis demonstrates the elongation of V-O bond. Furthermore, ex-situ XPS verifies the contents of pyridinium and pyrrole nitrogen increase during electrochemical process to improve the electronic conductivity. Cl- can act as carrier to elevate the charge transfer and reduce the resistance during Na+ deintercalation. The notably improved kinetic characteristics boost a higher voltage platform at 3.9 V derived from V4+/V5+. Ex-situ XRD indicates CZP-2 possesses great cyclic reversibility with near-zero strain property. Consequently, CZP-2 achieves superior rate capability and cycling performance in half and three type full cells (CZP-2//CHC, CZP-2//FeSe2 and CZP-2//CZP-2). Moreover, ARC measurement verifies CZP-2 has a higher thermal runaway temperature with better thermal stability.
引用
收藏
页数:17
相关论文
共 47 条
[1]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[2]   Silicon substituted Na3V2(PO4)3/C nanocomposites enwrapped on conducting graphene for high-rate and long-lifespan sodium ion batteries [J].
Chen, Yanjun ;
Cheng, Jun ;
He, Zhenfeng ;
Wang, Yanzhong ;
Wang, Chao ;
Guo, Li .
CERAMICS INTERNATIONAL, 2020, 46 (17) :27660-27669
[3]   Boosting Zinc Storage Performance of Li3VO4 Cathode Material for Aqueous Zinc Ion Batteries via Carbon-Incorporation: A Study Combining Theory and Experiment [J].
Cheng, Huanhuan ;
Zhang, Yu ;
Cai, Xuanxuan ;
Liu, Chenfan ;
Wang, Zhiwen ;
Ye, Hang ;
Pan, Yanliang ;
Jia, Dianzeng ;
Lin, He .
SMALL, 2024, 20 (05)
[4]   Na3V2(PO4)3/C synthesized by a facile solid-phase method assisted with agarose as a high-performance cathode for sodium-ion batteries [J].
Feng, Pingyuan ;
Wang, Wei ;
Wang, Kangli ;
Cheng, Shijie ;
Jiang, Kai .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (21) :10261-10268
[5]   Mitigating Thermal Runaway of Lithium-Ion Batteries [J].
Feng, Xuning ;
Ren, Dongsheng ;
He, Xiangming ;
Ouyang, Minggao .
JOULE, 2020, 4 (04) :743-770
[6]   Anion Substitution Strategy toward an Advanced NASICON-Na4Fe3(PO4)2P2O7 Cathode for Sodium-Ion Batteries [J].
Ge, Xiaochen ;
He, Liang ;
Guan, Chaohong ;
Wang, Xu ;
Li, Jie ;
Lai, Yanqing ;
Zhang, Zhian .
ACS NANO, 2023, 18 (02) :1714-1723
[7]   High Capacity and High-Rate NASICON-Na3.75V1.25Mn0.75(PO4)3 Cathode for Na-Ion Batteries via Modulating Electronic and Crystal Structures [J].
Ghosh, Subham ;
Barman, Nabadyuti ;
Mazumder, Madhulika ;
Pati, Swapan K. ;
Rousse, Gwenaelle ;
Senguttuvan, Premkumar .
ADVANCED ENERGY MATERIALS, 2020, 10 (06)
[8]   Carbon-coating-increased working voltage and energy density towards an advanced Na3V2(PO4)2F3@C cathode in sodium-ion batteries [J].
Gu, Zhen-Yi ;
Guo, Jin-Zhi ;
Sun, Zhong-Hui ;
Zhao, Xin-Xin ;
Li, Wen-Hao ;
Yang, Xu ;
Liang, Hao-Jie ;
Zhao, Chen-De ;
Wu, Xing-Long .
SCIENCE BULLETIN, 2020, 65 (09) :702-710
[9]   Cryo-EM Revealing the Origin of Excessive Capacity of the Se Cathode in Sulfide-Based All-Solid-State Li-Se Batteries [J].
Guo, Baiyu ;
Wang, Zaifa ;
Chen, Jingzhao ;
Su, Yong ;
Li, Hui ;
Ye, Hongjun ;
Zhang, Xuedong ;
Yan, Jitong ;
Rong, Zhaoyu ;
Sun, Jun ;
Wang, Tao ;
Deng, Lei ;
Qiu, Hailong ;
Zhang, Liqiang ;
Tang, Yongfu ;
Huang, Jianyu .
ACS NANO, 2022, 16 (10) :17414-17423
[10]   Superior Na-ion storage achieved by Ti substitution in Na3V2(PO4)3 [J].
Huang, Yangyang ;
Li, Xiang ;
Wang, Jinsong ;
Miao, Lin ;
Li, Chang ;
Han, Jiantao ;
Huang, Yunhui .
ENERGY STORAGE MATERIALS, 2018, 15 :108-115