Milne and Hermite-Hadamard's type inequalities for strongly multiplicative convex function via multiplicative calculus

被引:1
作者
Umar, Muhammad [1 ]
Butt, Saad Ihsan [1 ]
Seol, Youngsoo [2 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Islamabad, Pakistan
[2] Dong A Univ, Dept Math, Busan 49315, South Korea
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 12期
关键词
convex function; multiplicative convex function; strongly multiplicative convex function; Hermite-Hadamard type inequality; Milne type inequality;
D O I
10.3934/math.20241625
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we take into account the notion of strongly multiplicative convex function and derive integral inequalities of Hermite-Hadamard (H.H) type for such a function in the frame of multiplicative calculus. We also develop integral inequalities of H.H type for product and quotient of strongly multiplicative convex and strongly multiplicative concave functions via multiplicative calculus. All the results of the theorems are verified graphically by taking into account some reasonable examples. Additionally, we establish the inequalities of the Milne type for strongly multiplicative convex functions.
引用
收藏
页码:34090 / 34108
页数:19
相关论文
共 50 条
[41]   Some Hermite-Hadamard type inequalities for functions of generalized convex derivative [J].
Korus, P. .
ACTA MATHEMATICA HUNGARICA, 2021, 165 (2) :463-473
[42]   SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR DIFFERENTIABLE CONVEX FUNCTIONS AND APPLICATIONS [J].
Xi, Bo-Yan ;
Qi, Feng .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (03) :243-257
[43]   New Hermite-Hadamard type inequalities for exponentially convex functions and applications [J].
Zhou, Shuang-Shuang ;
Rashid, Saima ;
Noor, Muhammad Aslam ;
Noor, Khalida Inayat ;
Safdar, Farhat ;
Chu, Yu-Ming .
AIMS MATHEMATICS, 2020, 5 (06) :6874-6901
[44]   Several integral inequalities of the Hermite-Hadamard type for s-(?, F)-convex functions [J].
Wang, Yan ;
Liu, Xi -Min ;
Guo, Bai-Ni .
SCIENCEASIA, 2023, 49 (02) :200-204
[45]   Some New Inequalities of Hermite-Hadamard's Type [J].
Saglam, Aziz ;
Yildirim, Huseyin ;
Sarikaya, Mehmet Zeki .
KYUNGPOOK MATHEMATICAL JOURNAL, 2010, 50 (03) :399-410
[46]   Generalization of quantum calculus and corresponding Hermite-Hadamard inequalities [J].
Akbar, Saira Bano ;
Abbas, Mujahid ;
Budak, Hueseyin .
ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (05)
[47]   Some Refinements of Hermite-Hadamard Type Integral Inequalities Involving Refined Convex Function of the Raina Type [J].
Tariq, Muhammad ;
Sahoo, Soubhagya Kumar ;
Ntouyas, Sotiris K. K. .
AXIOMS, 2023, 12 (02)
[48]   Hermite-Hadamard type fractional integral inequalities for strongly generalized-prequasi-invex function [J].
Bibi, Maria ;
Muddassar, Muhammad .
INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02) :515-525
[49]   Hermite-Hadamard Type Inequalities for h-Convex Functions Via Generalized Fractional Integrals [J].
Ali, M. Aamir ;
Budak, H. ;
Abbas, M. ;
Sarikaya, M. Z. ;
Kashuri, A. .
JOURNAL OF MATHEMATICAL EXTENSION, 2020, 14 (04) :187-234
[50]   A new Hermite-Hadamard type inequality for coordinate convex function [J].
Cao, Haisong .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)