Milne and Hermite-Hadamard's type inequalities for strongly multiplicative convex function via multiplicative calculus

被引:0
作者
Umar, Muhammad [1 ]
Butt, Saad Ihsan [1 ]
Seol, Youngsoo [2 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Islamabad, Pakistan
[2] Dong A Univ, Dept Math, Busan 49315, South Korea
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 12期
关键词
convex function; multiplicative convex function; strongly multiplicative convex function; Hermite-Hadamard type inequality; Milne type inequality;
D O I
10.3934/math.20241625
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we take into account the notion of strongly multiplicative convex function and derive integral inequalities of Hermite-Hadamard (H.H) type for such a function in the frame of multiplicative calculus. We also develop integral inequalities of H.H type for product and quotient of strongly multiplicative convex and strongly multiplicative concave functions via multiplicative calculus. All the results of the theorems are verified graphically by taking into account some reasonable examples. Additionally, we establish the inequalities of the Milne type for strongly multiplicative convex functions.
引用
收藏
页码:34090 / 34108
页数:19
相关论文
共 50 条
[31]   Refinement Mappings Related to Hermite-Hadamard Type Inequalities for GA-Convex Function [J].
Latif, Muhammad Amer ;
Kalsoom, Humaira ;
Khan, Zareen A. ;
Al-moneef, Areej A. .
MATHEMATICS, 2022, 10 (09)
[32]   On Hermite-Hadamard-Fejer-Type Inequalities for η-Convex Functions via Quantum Calculus [J].
Arunrat, Nuttapong ;
Nonlaopon, Kamsing ;
Budak, Hueseyin .
MATHEMATICS, 2023, 11 (15)
[33]   New results on Hermite-Hadamard type inequalities via Caputo-Fabrizio fractional integral for s-convex function [J].
Nasir, Jamshed ;
Qaisar, Shahid ;
Qayyum, Ather ;
Budak, Huseyin .
FILOMAT, 2023, 37 (15) :4943-4957
[34]   HERMITE-HADAMARD TYPE INEQUALITIES FOR THE PRODUCT OF (alpha, m)-CONVEX FUNCTIONS [J].
Yin, Hong-Ping ;
Qi, Feng .
MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2015, 27 (01) :71-79
[35]   Integral Inequalities of Hermite-Hadamard Type for Extended s-Convex Functions and Applications [J].
Shuang, Ye ;
Qi, Feng .
MATHEMATICS, 2018, 6 (11)
[36]   Discussions on two integral inequalities of Hermite-Hadamard type for convex functions [J].
Wu, Ying ;
Qi, Feng .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 406
[37]   A note on some new Hermite-Hadamard type inequalities for functions whose nth derivatives are strongly η-convex [J].
Kermausuor, Seth ;
Nwaeze, Eze R. .
INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (01) :179-187
[38]   Mappings related to Hermite-Hadamard type inequalities for harmonically convex functions [J].
Latif, Muhammad Amer .
PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2022, 54 (11) :665-678
[39]   HERMITE-HADAMARD TYPE INEQUALITIES FOR GEOMETRICALLY r-CONVEX FUNCTIONS [J].
Xi, Bo-Yan ;
Qi, Feng .
STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2014, 51 (04) :530-546
[40]   ON PARAMETRIZED HERMITE-HADAMARD TYPE INEQUALITIES [J].
Khan, Muhammad Adil ;
Khurshid, Yousaf .
FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2019, 34 (02) :213-229