Milne and Hermite-Hadamard's type inequalities for strongly multiplicative convex function via multiplicative calculus

被引:1
作者
Umar, Muhammad [1 ]
Butt, Saad Ihsan [1 ]
Seol, Youngsoo [2 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Islamabad, Pakistan
[2] Dong A Univ, Dept Math, Busan 49315, South Korea
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 12期
关键词
convex function; multiplicative convex function; strongly multiplicative convex function; Hermite-Hadamard type inequality; Milne type inequality;
D O I
10.3934/math.20241625
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we take into account the notion of strongly multiplicative convex function and derive integral inequalities of Hermite-Hadamard (H.H) type for such a function in the frame of multiplicative calculus. We also develop integral inequalities of H.H type for product and quotient of strongly multiplicative convex and strongly multiplicative concave functions via multiplicative calculus. All the results of the theorems are verified graphically by taking into account some reasonable examples. Additionally, we establish the inequalities of the Milne type for strongly multiplicative convex functions.
引用
收藏
页码:34090 / 34108
页数:19
相关论文
共 50 条
[21]   HERMITE-HADAMARD TYPE INEQUALITIES FOR p-CONVEX FUNCTIONS [J].
Iscan, Imdat .
INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2016, 11 (02) :137-145
[22]   New inequalities of hermite-hadamard type for convex functions with applications [J].
Kavurmaci, Havva ;
Avci, Merve ;
Ozdemir, M. Emin .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
[23]   EXPONENTIAL TRIGONOMETRIC CONVEX FUNCTIONS AND HERMITE-HADAMARD TYPE INEQUALITIES [J].
Kadakal, Mahir ;
Iscan, Imdat ;
Agarwal, Praveen ;
Jleli, Mohamed .
MATHEMATICA SLOVACA, 2021, 71 (01) :43-56
[24]   Generalizations of Hermite-Hadamard Type Integral Inequalities for Convex Functions [J].
Wu, Ying ;
Yin, Hong-Ping ;
Guo, Bai-Ni .
AXIOMS, 2021, 10 (03)
[25]   INTEGRAL INEQUALITIES OF HERMITE-HADAMARD TYPE FOR HARMONIC (h, s)-CONVEX FUNCTIONS [J].
Noor, Muhammad Aslam ;
Noor, Khalida Inayat ;
Iftikhar, Sabah .
INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2016, 11 (01) :61-69
[26]   SOME HERMITE-HADAMARD TYPE INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS [J].
Mihai, Marcela V. .
TAMKANG JOURNAL OF MATHEMATICS, 2013, 44 (04) :411-416
[27]   HERMITE-HADAMARD TYPE INEQUALITIES OBTAINED VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS [J].
Mihai, M. V. ;
Mitroi, F-C. .
ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2014, 83 (02) :209-215
[28]   HERMITE-HADAMARD'S INEQUALITIES FOR η-CONVEX FUNCTIONS VIA CONFORMABLE FRACTIONAL INTEGRALS AND RELATED INEQUALITIES [J].
Khan, M. Adil ;
Khurshid, Y. .
ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2021, 90 (02) :157-169
[29]   New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function [J].
Yang, Yanping ;
Saleem, Muhammad Shoaib ;
Nazeer, Waqas ;
Shah, Ahsan Fareed .
AIMS MATHEMATICS, 2021, 6 (11) :12260-+
[30]   Hermite-Hadamard Type Inequalities via the Montgomery Identity [J].
Khan, Muhammad Adil ;
Khurshid, Yousaf ;
Chu, Yu-Ming .
COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2019, 10 (01) :85-97