Milne and Hermite-Hadamard's type inequalities for strongly multiplicative convex function via multiplicative calculus

被引:0
作者
Umar, Muhammad [1 ]
Butt, Saad Ihsan [1 ]
Seol, Youngsoo [2 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Islamabad, Pakistan
[2] Dong A Univ, Dept Math, Busan 49315, South Korea
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 12期
关键词
convex function; multiplicative convex function; strongly multiplicative convex function; Hermite-Hadamard type inequality; Milne type inequality;
D O I
10.3934/math.20241625
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we take into account the notion of strongly multiplicative convex function and derive integral inequalities of Hermite-Hadamard (H.H) type for such a function in the frame of multiplicative calculus. We also develop integral inequalities of H.H type for product and quotient of strongly multiplicative convex and strongly multiplicative concave functions via multiplicative calculus. All the results of the theorems are verified graphically by taking into account some reasonable examples. Additionally, we establish the inequalities of the Milne type for strongly multiplicative convex functions.
引用
收藏
页码:34090 / 34108
页数:19
相关论文
共 50 条
  • [21] EXPONENTIAL TRIGONOMETRIC CONVEX FUNCTIONS AND HERMITE-HADAMARD TYPE INEQUALITIES
    Kadakal, Mahir
    Iscan, Imdat
    Agarwal, Praveen
    Jleli, Mohamed
    MATHEMATICA SLOVACA, 2021, 71 (01) : 43 - 56
  • [22] Generalizations of Hermite-Hadamard Type Integral Inequalities for Convex Functions
    Wu, Ying
    Yin, Hong-Ping
    Guo, Bai-Ni
    AXIOMS, 2021, 10 (03)
  • [23] New inequalities of hermite-hadamard type for convex functions with applications
    Kavurmaci, Havva
    Avci, Merve
    Ozdemir, M. Emin
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [24] INTEGRAL INEQUALITIES OF HERMITE-HADAMARD TYPE FOR HARMONIC (h, s)-CONVEX FUNCTIONS
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Iftikhar, Sabah
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2016, 11 (01): : 61 - 69
  • [25] HERMITE-HADAMARD TYPE INEQUALITIES FOR p-CONVEX FUNCTIONS
    Iscan, Imdat
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2016, 11 (02): : 137 - 145
  • [26] SOME HERMITE-HADAMARD TYPE INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS
    Mihai, Marcela V.
    TAMKANG JOURNAL OF MATHEMATICS, 2013, 44 (04): : 411 - 416
  • [27] HERMITE-HADAMARD TYPE INEQUALITIES OBTAINED VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS
    Mihai, M. V.
    Mitroi, F-C.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2014, 83 (02): : 209 - 215
  • [28] HERMITE-HADAMARD'S INEQUALITIES FOR η-CONVEX FUNCTIONS VIA CONFORMABLE FRACTIONAL INTEGRALS AND RELATED INEQUALITIES
    Khan, M. Adil
    Khurshid, Y.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2021, 90 (02): : 157 - 169
  • [29] Hermite-Hadamard Type Inequalities via the Montgomery Identity
    Khan, Muhammad Adil
    Khurshid, Yousaf
    Chu, Yu-Ming
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2019, 10 (01): : 85 - 97
  • [30] New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function
    Yang, Yanping
    Saleem, Muhammad Shoaib
    Nazeer, Waqas
    Shah, Ahsan Fareed
    AIMS MATHEMATICS, 2021, 6 (11): : 12260 - +