Milne and Hermite-Hadamard's type inequalities for strongly multiplicative convex function via multiplicative calculus

被引:0
|
作者
Umar, Muhammad [1 ]
Butt, Saad Ihsan [1 ]
Seol, Youngsoo [2 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Islamabad, Pakistan
[2] Dong A Univ, Dept Math, Busan 49315, South Korea
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 12期
关键词
convex function; multiplicative convex function; strongly multiplicative convex function; Hermite-Hadamard type inequality; Milne type inequality;
D O I
10.3934/math.20241625
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we take into account the notion of strongly multiplicative convex function and derive integral inequalities of Hermite-Hadamard (H.H) type for such a function in the frame of multiplicative calculus. We also develop integral inequalities of H.H type for product and quotient of strongly multiplicative convex and strongly multiplicative concave functions via multiplicative calculus. All the results of the theorems are verified graphically by taking into account some reasonable examples. Additionally, we establish the inequalities of the Milne type for strongly multiplicative convex functions.
引用
收藏
页码:34090 / 34108
页数:19
相关论文
共 50 条
  • [1] ON SOME HERMITE-HADAMARD INTEGRAL INEQUALITIES IN MULTIPLICATIVE CALCULUS
    Ali, Muhammad Aamir
    Abbas, Mujahid
    Zafar, Azhar Ali
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2019, 10 (01): : 111 - 122
  • [2] SOME NEW HERMITE-HADAMARD INTEGRAL INEQUALITIES IN MULTIPLICATIVE CALCULUS
    Ali, M. A.
    Abbas, M.
    Budak, H.
    Kashuri, A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 (04): : 1183 - 1193
  • [3] ON HERMITE-HADAMARD TYPE INEQUALITIES FOR MULTIPLICATIVE FRACTIONAL INTEGRALS
    Budak, H.
    Ozcelik, K.
    MISKOLC MATHEMATICAL NOTES, 2020, 21 (01) : 91 - 99
  • [4] Generalization of Hermite-Hadamard, trapezoid, and midpoint Mercer type inequalities for fractional integrals in multiplicative calculus
    Mateen, Abdul
    Zhang, Zhiyue
    Ozcan, Serap
    Ali, Muhammad Aamir
    BOUNDARY VALUE PROBLEMS, 2025, 2025 (01):
  • [5] ON HERMITE-HADAMARD TYPE INEQUALITIES FOR INTERVAL-VALUED MULTIPLICATIVE INTEGRALS
    Ali, Muhammad Aamir
    Zhang, Zhiyue
    Budak, Huseyin
    Sarikaya, Mehmet Zeki
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (02): : 1428 - 1448
  • [6] On Hermite-Hadamard Type Inequalities for Coordinated Convex Functions via (p,q)-Calculus
    Wannalookkhee, Fongchan
    Nonlaopon, Kamsing
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    MATHEMATICS, 2021, 9 (07)
  • [7] Hermite-Hadamard-Type Inequalities for Multiplicative Harmonic s-Convex Functions
    Ozcan, Serap
    Urus, Ayca
    Butt, Saad Ihsan
    UKRAINIAN MATHEMATICAL JOURNAL, 2025, : 1537 - 1558
  • [8] Symmetrical Hermite-Hadamard type inequalities stemming from multiplicative fractional integrals
    Peng, Yu
    Ozcan, Serap
    Du, Tingsong
    CHAOS SOLITONS & FRACTALS, 2024, 183
  • [9] Hermite-Hadamard type inequalities for multiplicative Riemann-Liouville fractional integrals
    Du, Tingsong
    Peng, Yu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 440
  • [10] Quantum analogue of Hermite-Hadamard type inequalities for strongly convex functions
    Mishra, Shashi Kant
    Sharma, Ravina
    Bisht, Jaya
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2025, 74 (01)