Holomorphic anomaly equations for the Hilbert scheme of points of a K3 surface

被引:2
作者
Oberdieck, Georg [1 ]
机构
[1] KTH Royal Inst Technol, Dept Math, Stockholm, Sweden
基金
欧洲研究理事会;
关键词
GROMOV-WITTEN THEORY; DONALDSON-THOMAS THEORY; CALABI-YAU THREEFOLDS; QUANTUM COHOMOLOGY; PRODUCT FORMULA; JACOBI FORMS; INVARIANTS; ALGEBRA; MANIFOLDS; SHEAVES;
D O I
10.2140/gt.2024.28.3779
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We conjecture that the generating series of Gromov-Witten invariants of the Hilbert schemes of n points on a K3 surface are quasi-Jacobi forms and satisfy a holomorphic anomaly equation. We prove the conjecture in genus 0 and for at most three markings - for all Hilbert schemes and for arbitrary curve classes. In particular, for fixed n, the reduced quantum cohomologies of all hyperk & auml;hler varieties of K3 OE n]-type are determined up to finitely many coefficients. As an application we show that the generating series of 2-point Gromov-Witten classes are vector-valued Jacobi forms of weight- 10, and that the fiberwise Donaldson-Thomas partition functions of an order-2 CHL Calabi-Yau threefold are Jacobi forms.
引用
收藏
页码:3779 / 3868
页数:93
相关论文
共 98 条
[1]   Relative and orbifold Gromov-Witten invariants [J].
Abramovich, Dan ;
Cadman, Charles ;
Wise, Jonathan .
ALGEBRAIC GEOMETRY, 2017, 4 (04) :472-500
[2]   Gauss-Manin Connection in Disguise: Calabi-Yau Threefolds [J].
Alim, Murad ;
Movasati, Hossein ;
Scheidegger, Emanuel ;
Yau, Shing-Tung .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 344 (03) :889-914
[3]  
[Anonymous], 2005, THE STACKS PROJECT
[4]   Gromov-Witten theory of complete intersections via nodal invariants [J].
Arguz, Hulya ;
Bousseau, Pierrick ;
Pandharipande, Rahul ;
Zvonkine, Dimitri .
JOURNAL OF TOPOLOGY, 2023, 16 (01) :264-343
[5]  
Bae, 2021, Forum Math. Sigma, V9
[6]   Pixton's formula and Abel-Jacobi theory on the Picard stack [J].
Bae, Younghan ;
Holmes, David ;
Pandharipande, Rahul ;
Schmitt, Johannes ;
Schwarz, Rosa .
ACTA MATHEMATICA, 2023, 230 (02) :205-319
[7]   Chow rings of stacks of prestable curves I [J].
Bae, Younghan ;
Schmitt, Johannes ;
Skowera, Jonathan .
FORUM OF MATHEMATICS SIGMA, 2022, 10
[8]  
BEAUVILLE A, 1983, J DIFFER GEOM, V18, P755, DOI 10.4310/jdg/1214438181
[9]   The intrinsic normal cone [J].
Behrend, K ;
Fantechi, B .
INVENTIONES MATHEMATICAE, 1997, 128 (01) :45-88
[10]   Gromov-Witten invariants in algebraic geometry [J].
Behrend, K .
INVENTIONES MATHEMATICAE, 1997, 127 (03) :601-617