Machine learning models for neurocognitive outcome prediction in preterm born infants

被引:1
作者
van Boven, Menne R. [1 ,2 ,3 ]
Bennis, Frank C. [2 ,3 ,4 ]
Onland, Wes [1 ,3 ]
Aarnoudse-Moens, Cornelieke S. H. [1 ,3 ,5 ]
Frings, Max [6 ]
Tran, Kevin [6 ]
Katz, Trixie A. [1 ,3 ]
Romijn, Michelle [1 ,3 ]
Hoogendoorn, Mark [4 ]
van Kaam, Anton H. [1 ,3 ]
Leemhuis, Aleid G. [1 ]
Oosterlaan, Jaap [2 ,3 ]
Konigs, Marsh [2 ,3 ]
机构
[1] Locat Univ Amsterdam, Emma Childrens Hosp Amsterdam UMC, Dept Neonatol, Meibergdreef 9, Amsterdam, Netherlands
[2] locat Univ Amsterdam, Emma Childrens Hosp Amsterdam UMC, Follow Me program & Emma Neurosci Grp, Meibergdreef 9, Amsterdam, Netherlands
[3] Amsterdam Reprod & Dev Res Inst, Amsterdam, Netherlands
[4] Vrije Univ Amsterdam, Fac Sci, Dept Comp Sci, Quantitat Data Analyt Grp, Amsterdam, Netherlands
[5] Locat Univ Amsterdam, Emma Childrens Hosp Amsterdam UMC, Psychosocial Dept, Meibergdreef 9, Amsterdam, Netherlands
[6] Univ Amsterdam, Fac Sci, Data Sci, Amsterdam, Netherlands
关键词
INTELLIGENCE; CHILDREN; METAANALYSIS; MORTALITY;
D O I
10.1038/s41390-025-03815-6
中图分类号
R72 [儿科学];
学科分类号
100202 ;
摘要
Background: Outcome prediction after preterm birth is important for long-term neonatal care, but has proven notoriously challenging for neurocognitive outcome. This study investigated the potential of machine learning to improve neurocognitive outcome prediction at two and five years of corrected age in preterm infants, using readily available predictors from the neonatal setting. Methods: Predictors originating from the antenatal and neonatal period of preterm infants born <30 weeks gestation were used to predict adverse neurocognitive outcome on the Bayley Scale and Wechsler Preschool and Primary Scale of Intelligence. Machine learning models were compared to conventional logistic regression and validated using internal cross-validation. Results: Best performing models were a random forest (two-year outcome) and a support vector machine (five-year outcome) with an area under the receiver operating characteristic curve (AUC) of 0.682 and 0.695 respectively, reaching high negative predictive values (95% and 91%, respectively). These models performed significantly better than the conventional models. Conclusions: The models reached moderate overall predictive performance, yet with promising potential for early identification of children without adverse neurocognitive outcome. Machine learning modestly improved neurocognitive outcome prediction. Future research may harvest the predictive potential of a wider variety of routine (clinical) data, such as vital sign time series.
引用
收藏
页数:8
相关论文
共 44 条
[1]   Cognitive, motor, behavioural and academic performances of children born preterm: a meta-analysis and systematic review involving 64 061 children [J].
Allotey, J. ;
Zamora, J. ;
Cheong-See, F. ;
Kalidindi, M. ;
Arroyo-Manzano, D. ;
Asztalos, E. ;
van der Post, J. A. M. ;
Mol, B. W. ;
Moore, D. ;
Birtles, D. ;
Khan, K. S. ;
Thangaratinam, S. .
BJOG-AN INTERNATIONAL JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2018, 125 (01) :16-25
[2]   Early prediction of poor outcome in extremely low birth weight infants by classification tree analysis [J].
Ambalavanan, N. ;
Baibergenova, A. ;
Carlo, W. A. ;
Saigal, S. ;
Schmidt, B. ;
Thorpe, K. E. .
JOURNAL OF PEDIATRICS, 2006, 148 (04) :438-444
[3]   Prediction of neurologic morbidity in extremely low birth weight infants [J].
Ambalavanan N. ;
Nelson K.G. ;
Alexander G. ;
Johnson S.E. ;
Biasini F. ;
Carlo W.A. .
Journal of Perinatology, 2000, 20 (8) :496-503
[4]   Underestimation of Developmental Delay by the New Bayley-III Scale [J].
Anderson, Peter J. ;
De Luca, Cinzia R. ;
Hutchinson, Esther ;
Roberts, Gehan ;
Doyle, Lex W. .
ARCHIVES OF PEDIATRICS & ADOLESCENT MEDICINE, 2010, 164 (04) :352-356
[5]   Bronchopulmonary dysplasia and surfactant [J].
Bancalari, E ;
del Moral, T .
BIOLOGY OF THE NEONATE, 2001, 80 :7-13
[6]  
Bayley N., 2006, BAYLEY SCALES INFANT
[7]  
Collins GS, 2015, BMJ-BRIT MED J, V350, DOI [10.1136/bmj.g7594, 10.1111/1471-0528.13244]
[8]   Predicting the outcomes of preterm neonates beyond the neonatal intensive care unit: What are we missing? [J].
Crilly, Colin J. ;
Haneuse, Sebastien ;
Litt, Jonathan S. .
PEDIATRIC RESEARCH, 2021, 89 (03) :426-445
[9]  
Davison A. C., 1997, Bootstrap Methods and their Applications
[10]   Predictive value of the Bayley Scales of Infant Development on development of very preterm/very low birth weight children: A meta-analysis [J].
dos Santos, Elsa S. Luttikhuizen ;
de Kieviet, Jorrit F. ;
Konigs, Marsh ;
van Elburg, Ruurd M. ;
Oosterlaan, Jaap .
EARLY HUMAN DEVELOPMENT, 2013, 89 (07) :487-496