Multi-task Learning for License Plate Recognition in Unconstrained Scenarios

被引:0
|
作者
Mo, Zhen-Lun [1 ]
Chen, Song-Lu [1 ]
Liu, Qi [1 ]
Chen, Feng [2 ]
Yin, Xu-Cheng [1 ]
机构
[1] Univ Sci & Technol Beijing, Beijing, Peoples R China
[2] EEasy Technol Co Ltd, Zhuhai, Peoples R China
关键词
License plate recognition; Multi-task; Multi-directional; Multi-line; End-to-end; NETWORK;
D O I
10.1007/978-3-031-70533-5_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The recognition of license plates in natural scenes often face challenges such as multi-directional and multi-line variations. Additionally, previous studies have treated license plate detection and recognition as separate tasks, resulting in inefficiencies and error accumulation. To address these challenges, we propose an end-to-end method for license plate detection and recognition using multi-task learning. Firstly, we introduce two parallel branches to detect the horizontal bounding box and the four corners of the license plate, enabling multi-directional license plate detection in a multi-task manner. The outputs from these branches are combined to enhance recognition accuracy. Secondly, we propose to extract global features to perceive character layout and utilize reading order to spatially attend to characters for recognizing multi-line license plates. Finally, we combine detection and recognition using the same backbone, with the detection branch based on multiple deep layers and the recognition branch based on multiple shallow layers, thereby constructing an end-to-end detection and recognition network. Comparative experiments on CCPD and RodoSol datasets validate that our method significantly outperforms state-of-the-art methods, particularly in scenarios involving multi-directional and multi-line license plates.
引用
收藏
页码:34 / 50
页数:17
相关论文
共 50 条
  • [31] Accurate human activity recognition with multi-task learning
    Yinggang Li
    Shigeng Zhang
    Bing Zhu
    Weiping Wang
    CCF Transactions on Pervasive Computing and Interaction, 2020, 2 : 288 - 298
  • [32] Multi-task learning network for handwritten numeral recognition
    Hou, Jinhui
    Zeng, Huanqiang
    Cai, Lei
    Zhu, Jianqing
    Chen, Jing
    Cai, Canhui
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (02) : 843 - 850
  • [33] HANDWRITTEN NUMERAL RECOGNITION USING MULTI-TASK LEARNING
    Hou, Jinhui
    Zeng, Huanqiang
    Cai, Lei
    Zhu, Jianqing
    Cao, Jiuwen
    Hou, Junhui
    2017 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ISPACS 2017), 2017, : 155 - 158
  • [34] Speech Emotion Recognition based on Multi-Task Learning
    Zhao, Huijuan
    Han Zhijie
    Wang, Ruchuan
    2019 IEEE 5TH INTL CONFERENCE ON BIG DATA SECURITY ON CLOUD (BIGDATASECURITY) / IEEE INTL CONFERENCE ON HIGH PERFORMANCE AND SMART COMPUTING (HPSC) / IEEE INTL CONFERENCE ON INTELLIGENT DATA AND SECURITY (IDS), 2019, : 186 - 188
  • [35] Emotion Recognition With Sequential Multi-task Learning Technique
    Phan Tran Dac Thinh
    Hoang Manh Hung
    Yang, Hyung-Jeong
    Kim, Soo-Hyung
    Lee, Guee-Sang
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 3586 - 3589
  • [36] Survey on multi-task learning for object classification and recognition
    Li H.
    Wang F.
    Ding W.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2022, 43 (01):
  • [37] Multi-Task Learning for Face Ethnicity and Gender Recognition
    Yu, Chanjuan
    Fang, Yuchun
    Li, Yang
    BIOMETRIC RECOGNITION (CCBR 2014), 2014, 8833 : 136 - 144
  • [38] Radar Signal Recognition Based on Multi-Task Learning
    Li, Huihui
    Quan, Daying
    Zhou, Fang
    Ren, Feitao
    Yu, Kaiyin
    Jin, Ning
    Wu, Jiongfeng
    IEEE ACCESS, 2024, 12 : 153209 - 153220
  • [39] Multi-Task Learning for Voice Related Recognition Tasks
    Montalvo, Ana
    Calvo, Jose R.
    Bonastre, Jean-Francois
    INTERSPEECH 2020, 2020, : 2997 - 3001
  • [40] Accurate human activity recognition with multi-task learning
    Li, Yinggang
    Zhang, Shigeng
    Zhu, Bing
    Wang, Weiping
    CCF TRANSACTIONS ON PERVASIVE COMPUTING AND INTERACTION, 2020, 2 (04) : 288 - 298