APPROXIMATING FIXED POINTS OF ENRICHED QUASINONEXPANSIVE MAPPINGS IN BANACH SPACES

被引:0
作者
Shahzad, Naseer [1 ]
Alansari, Monairah [1 ]
Albideewi, Ashwaq [1 ]
机构
[1] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
关键词
Quasinonexpansive mapping; enriched quasinonexpansive mapping; Banach space; QUASI-NONEXPANSIVE MAPPINGS; STRONG-CONVERGENCE; WEAK; ITERATION; THEOREMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study the approzimation of common fixed points of enriched quasinonexpansive mappings. We obtain weak and strong convergence theorems for enriched quasinonexpansive mappings.
引用
收藏
页码:1791 / 1802
页数:12
相关论文
共 22 条
[1]  
Berinde V., 2018, An. Univ. Vest Timis. Ser. Mat.-Inform, V56, P13
[2]  
Berinde V, 2007, LECT NOTES MATH, V1912, P1
[3]   A Modified Krasnosel'skii-Mann Iterative Algorithm for Approximating Fixed Points of Enriched Nonexpansive Mappings [J].
Berinde, Vasile .
SYMMETRY-BASEL, 2022, 14 (01)
[4]   Approximating fixed points of enriched contractions in Banach spaces [J].
Berinde, Vasile ;
Pacurar, Madalina .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2020, 22 (02)
[5]  
Berinde V, 2020, CARPATHIAN J MATH, V36, P27
[6]  
Berinde V, 2019, CARPATHIAN J MATH, V35, P293
[7]   Strong convergence of an implicit iteration process for a finite family of nonexpansive mappings [J].
Chidume, CE ;
Shahzad, N .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 62 (06) :1149-1156
[8]  
DAS G, 1986, INDIAN J PURE AP MAT, V17, P1263
[9]   Convergence of Ishikawa iterates of quasi-nonexpansive mappings [J].
Ghosh, MK ;
Debnath, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 207 (01) :96-103
[10]   FIXED-POINTS BY A NEW ITERATION METHOD [J].
ISHIKAWA, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 44 (01) :147-150