In situ characterizations for aqueous rechargeable zinc batteries

被引:15
作者
Wu, Buke [1 ,2 ,3 ]
Mu, Yongbiao [1 ,2 ,3 ]
He, Jiafeng [1 ,2 ,3 ]
Li, Ming [4 ]
Li, Zheng [1 ,2 ,3 ,5 ]
Chu, Youqi [1 ,2 ,3 ]
Li, Yiju [1 ,2 ,3 ]
Zeng, Lin [1 ,2 ,3 ]
机构
[1] Southern Univ Sci & Technol, Shenzhen Key Lab Adv Energy Storage, Shenzhen 518055, Peoples R China
[2] Southern Univ Sci & Technol, SUSTech Energy Inst Carbon Neutral, Shenzhen, Peoples R China
[3] Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen, Peoples R China
[4] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan, Hubei, Peoples R China
[5] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Clear Water Bay, Hong Kong, Peoples R China
来源
CARBON NEUTRALIZATION | 2023年 / 2卷 / 03期
关键词
in situ characterizations; interphases; spectroscopy; zinc batteries; RAY-ABSORPTION SPECTROSCOPY; LITHIUM-ION BATTERIES; SURFACE-ROUGHNESS; CATHODE; CHALLENGES; TRANSFORMATION; ELECTROLYTES; DEPOSITION; EVOLUTION; RECOVERY;
D O I
10.1002/cnl2.56
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recently, aqueous rechargeable zinc batteries (ARZBs) have become a hot topic in secondary batteries. Constant attention has witnessed the development of ARZBs, such as active materials, reaction mechanisms, and mass transport, and huge successes have been achieved. However, as the fundamental basis of battery monitoring in real-time and the theories of ARZBs, the in situ characterization techniques are equally worth discussing but the relevant review remains missing. Herein, this review focuses on the in situ characterization techniques of visualization and spectroscopy characterizations for ARZBs. Typical research of the in situ techniques is comprehensively discussed, including the setup of the in situ cells, the working principle of characterizations, the application, and the analysis applied in ARZBs. With the help of in situ characterizations, the reaction dynamics, transport kinetics, and thermodynamics in ARZBs can be thoroughly researched. Finally, the current primary challenges and future opportunities faced by in situ techniques toward ARZBs are also summarized. This review focuses on the in situ characterizations applied in aqueous rechargeable zinc batteries (ARZBs) from visualization technologies to spectroscopic techniques, which include 2D and 3D visualizations, optical spectroscopy, X-ray spectroscopy, and mass spectroscopy. The different applications of these in situ technologies in ARZBs to investigate the interphase evolutions and structural changes are discussed on an atom-level and nano-to-micro scale.image
引用
收藏
页码:310 / 338
页数:29
相关论文
共 149 条
[41]   Comprehensive H2O Molecules Regulation via Deep Eutectic Solvents for Ultra-Stable Zinc Metal Anode [J].
Li, Ming ;
Wang, Xuanpeng ;
Hu, Jisong ;
Zhu, Jiexin ;
Niu, Chaojiang ;
Zhang, Huazhang ;
Li, Cong ;
Wu, Buke ;
Han, Chunhua ;
Mai, Liqiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (08)
[42]  
Li M, 2021, ENERG ENVIRON SCI, V14, P3796, DOI [10.1039/d1ee00030f, 10.1039/D1EE00030F]
[43]   Intrinsic voltage plateau of a Nb2CTx MXene cathode in an aqueous electrolyte induced by high-voltage scanning [J].
Li, Xinliang ;
Ma, Xinyao ;
Hou, Yue ;
Zhang, Zhenhua ;
Lu, Yue ;
Huang, Zhaodong ;
Liang, Guojin ;
Li, Mian ;
Yang, Qi ;
Ma, Jiale ;
Li, Na ;
Dong, Binbin ;
Huang, Qing ;
Chen, Furong ;
Fan, Jun ;
Zhi, Chunyi .
JOULE, 2021, 5 (11) :2993-3005
[44]   Recent advances in flexible aqueous zinc-based rechargeable batteries [J].
Li, Xuejin ;
Tang, Yongchao ;
Lv, Haiming ;
Wang, Wenlong ;
Mo, Funian ;
Liang, Guojin ;
Zhi, Chunyi ;
Li, Hongfei .
NANOSCALE, 2019, 11 (39) :17992-18008
[45]   Controlled deposition of Li metal [J].
Li, Yejing ;
Jiao, Junyu ;
Bi, Jiepeng ;
Wang, Xuefeng ;
Wang, Zhaoxiang ;
Chen, Liquan .
NANO ENERGY, 2017, 32 :241-246
[46]   Long-Life Aqueous Zn-I2 Battery Enabled by a Low-Cost Multifunctional Zeolite Membrane Separator [J].
Li, Zhengang ;
Wu, Xiaohong ;
Yu, Xiaoyu ;
Zhou, Shiyuan ;
Qiao, Yu ;
Zhou, Haoshen ;
Sun, Shi-Gang .
NANO LETTERS, 2022, 22 (06) :2538-2546
[47]   Novel Charging-Optimized Cathode for a Fast and High-Capacity Zinc-Ion Battery [J].
Li, Zhi ;
Wu, Buke ;
Yan, Mengyu ;
He, Liang ;
Xu, Lin ;
Zhang, Guobin ;
Xiong, Tengfei ;
Luo, Wen ;
Mai, Liqiang .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (09) :10420-10427
[48]   A Long Cycle-Life High-Voltage Spinel Lithium-Ion Battery Electrode Achieved by Site-Selective Doping [J].
Liang, Gemeng ;
Wu, Zhibin ;
Didier, Christophe ;
Zhang, Wenchao ;
Cuan, Jing ;
Li, Baohua ;
Ko, Kuan-Yu ;
Hung, Po-Yang ;
Lu, Cheng-Zhang ;
Chen, Yuanzhen ;
Leniec, Grzegorz ;
Kaczmarek, Slawomir Maksymilian ;
Johannessen, Bernt ;
Thomsen, Lars ;
Peterson, Vanessa K. ;
Pang, Wei Kong ;
Guo, Zaiping .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (26) :10594-10602
[49]   High-voltage asymmetric metal-air batteries based on polymeric single-Zn2+-ion conductor [J].
Lin, Chao ;
Kim, Sung-Hae ;
Xu, Qing ;
Kim, Dong-Hyung ;
Ali, Gohar ;
Shinde, Sambhaji S. ;
Yang, Shuai ;
Yang, Yuqi ;
Li, Xiaopeng ;
Jiang, Zheng ;
Lee, Jung-Ho .
MATTER, 2021, 4 (04) :1287-1304
[50]   Recent Advances of Aqueous Rechargeable Zinc-Iodine Batteries: Challenges, Solutions, and Prospects [J].
Lin, Dun ;
Li, Yat .
ADVANCED MATERIALS, 2022, 34 (23)