Plain-Det: A Plain Multi-dataset Object Detector

被引:0
|
作者
Shi, Cheng [1 ]
Zhu, Yuchen [1 ]
Yang, Sibei [1 ]
机构
[1] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Object detection; Multiple datasets; Proposal generation;
D O I
10.1007/978-3-031-72652-1_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent advancements in large-scale foundational models have sparked widespread interest in training highly proficient large vision models. A common consensus revolves around the necessity of aggregating extensive, high-quality annotated data. However, given the inherent challenges in annotating dense tasks in computer vision, such as object detection and segmentation, a practical strategy is to combine and leverage all available data for training purposes. In this work, we propose Plain-Det, which offers flexibility to accommodate new datasets, robustness in performance across diverse datasets, training efficiency, and compatibility with various detection architectures. We utilize Def-DETR, with the assistance of Plain-Det, to achieve a mAP of 51.9 on COCO, matching the current state-of-the-art detectors. We conduct extensive experiments on 13 downstream datasets and Plain-Det demonstrates strong generalization capability. Code is release at https://github.com/ChengShiest/Plain-Det.
引用
收藏
页码:210 / 226
页数:17
相关论文
共 50 条
  • [11] Multi-dataset Training for Medical Image Segmentation as a Service
    Civit-Masot, Javier
    Luna-Perejon, Francisco
    Duran-Lopez, Lourdes
    Dominguez-Morales, J. P.
    Vicente-Diaz, Saturnino
    Linares-Barranco, Alejandro
    Civit, Anton
    IJCCI: PROCEEDINGS OF THE 11TH INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL INTELLIGENCE, 2019, : 542 - 547
  • [12] MultiTalent: A Multi-dataset Approach to Medical Image Segmentation
    Ulrich, Constantin
    Isensee, Fabian
    Wald, Tassilo
    Zenk, Maximilian
    Baumgartner, Michael
    Maier-Hein, Klaus H.
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT III, 2023, 14222 : 648 - 658
  • [13] A multi-dataset analysis of the morphology of mesoscale convective vortices
    Davis, CA
    Trier, SB
    Tuttle, JD
    Carbone, RE
    Miller, LJ
    Oye, R
    FOURTH SYMPOSIUM ON INTEGRATED OBSERVING SYSTEMS, 2000, : 78 - 83
  • [14] A dataset for plain language adaptation of biomedical abstracts
    Attal, Kush
    Ondov, Brian
    Demner-Fushman, Dina
    SCIENTIFIC DATA, 2023, 10 (01) : 8
  • [15] Multi-dataset Approach to Medical Image Segmentation MultiTalent
    Ulrich, Constantin
    Isensee, Fabian
    Wald, Tassilo
    Zenk, Maximilian
    Baumgartner, Michael
    Maier-Hein, Klaus H.
    BILDVERARBEITUNG FUR DIE MEDIZIN 2024, 2024, : 78 - 78
  • [16] Victim or Attacker? A Multi-dataset Domain Classification of Phishing Attacks
    Le Page, Sophie
    Jourdan, Guy-Vincent
    2019 17TH INTERNATIONAL CONFERENCE ON PRIVACY, SECURITY AND TRUST (PST), 2019, : 96 - 105
  • [17] A dataset for plain language adaptation of biomedical abstracts
    Kush Attal
    Brian Ondov
    Dina Demner-Fushman
    Scientific Data, 10
  • [18] MENSA: Multi-Dataset Harmonized Pretraining for Semantic Segmentation
    Shi, Bowen
    Zhang, Xiaopeng
    Wang, Yaoming
    Dai, Wenrui
    Zou, Junni
    Xiong, Hongkai
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 2127 - 2140
  • [19] ROCHE: Analysis of Eclipsing Binary Multi-Dataset Observables
    Pribulla, Theodor
    FROM INTERACTING BINARIES TO EXOPLANETS: ESSENTIAL MODELING TOOLS, 2012, (282): : 279 - 282
  • [20] Robust multi-dataset identification with frequency domain decomposition
    Amador, D. R. Sandro
    Brincker, Rune
    JOURNAL OF SOUND AND VIBRATION, 2021, 508