Single-Atom-Layer Metallization of Plasmonic Semiconductor Surface for Selectively Enhancing IR-Driven Photocatalytic Reduction of CO2 into CH4

被引:14
作者
Lu, Na [1 ]
Jiang, Xiaoyi [1 ]
Zhu, Yongan [1 ]
Yu, Linqun [1 ]
Du, Shiwen [1 ]
Huang, Jindou [1 ]
Zhang, Zhenyi [1 ]
机构
[1] Dalian Minzu Univ, Sch Phys & Mat Engn, Key Lab New Energy & Rare Earth Resource Utilizat, Key Lab Photosensit Mat & Devices Liaoning Prov, 18 Liaohe West Rd, Dalian 116600, Peoples R China
基金
中国国家自然科学基金;
关键词
CH4; selectivity; CO2; reduction; photocatalysis; plasmonic semiconductor; single-atom-layer metallization; CATALYTIC-REDUCTION; CARBON-DIOXIDE; NANOCRYSTALS; CONVERSION; NANOPARTICLES; RESONANCE; CARRIERS; TIO2;
D O I
10.1002/adma.202413931
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Efficient harvesting and utilization of abundant infrared (IR) photons from sunlight is crucial for the industrial application of photocatalytic CO2 reduction. Plasmonic semiconductors have significant potential in absorbing low-energy IR photons to generate energetic hot electrons. However, modulating these hot electrons to selectively enhance the activity of CO2 reduction into CH4 remains a challenge. Herein, the study proposes a single-atom-layer (SAL) metallization strategy to enhance the generation of IR-driven hot electrons and facilitate their transfer from plasmonic semiconductors to CO2 for producing CH4. This strategy is demonstrated using a paradigmatic W18O49@W-Sn nanowire array (NWA), where Sn2+ ions are grafted onto exposed O atoms on the surface of plasmonic W18O49 to form a surface W-Sn SAL. The incorporation of Sn single atoms enhances plasmonic absorption in IR light for W18O49 NWA. The W-Sn SAL not only promotes CO2 adsorption and reduces its reaction activation energy barrier but also shifts the endoergic CO-protonation process toward an exoergic reaction pathway. Thus, the W18O49@W-Sn NWA exhibits >98% selectivity for IR-driven CO2 reduction to CH4 with an activity over 9.0 times higher than that of bare W18O49 NWA. This SAL metallization strategy can also be applied to other plasmonic semiconductors for selectively enhancing CO2-to-CH4 reduction reactions.
引用
收藏
页数:11
相关论文
共 59 条
[1]   Best practices for experiments and reporting in photocatalytic CO2 reduction [J].
Bonchio, Marcella ;
Bonin, Julien ;
Ishitani, Osamu ;
Lu, Tong-Bu ;
Morikawa, Takeshi ;
Morris, Amanda J. ;
Reisner, Erwin ;
Sarkar, Debashrita ;
Toma, Francesca M. ;
Robert, Marc .
NATURE CATALYSIS, 2023, 6 (08) :657-665
[2]   Surfactant-Free Nonaqueous Synthesis of Plasmonic Molybdenum Oxide Nanosheets with Enhanced Catalytic Activity for Hydrogen Generation from Ammonia Borane under Visible Light [J].
Cheng, Hefeng ;
Kamegawa, Takashi ;
Mori, Kohsuke ;
Yamashita, Hiromi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (11) :2910-2914
[3]   Photocatalytic CO2 reduction [J].
Fang, Siyuan ;
Rahaman, Motiar ;
Bharti, Jaya ;
Reisner, Erwin ;
Robert, Marc ;
Ozin, Geoffrey A. ;
Hu, Yun Hang .
NATURE REVIEWS METHODS PRIMERS, 2023, 3 (01)
[4]   Solar fuels: research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels [J].
Gong, Eunhee ;
Ali, Shahzad ;
Hiragond, Chaitanya B. ;
Kim, Hong Soo ;
Powar, Niket S. ;
Kim, Dongyun ;
Kim, Hwapyong ;
In, Su-Il .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (03) :880-937
[5]   Locally Oxidized Silicon Surface-Plasmon Schottky Detector for Telecom Regime [J].
Goykhman, Ilya ;
Desiatov, Boris ;
Khurgin, Jacob ;
Shappir, Joseph ;
Levy, Uriel .
NANO LETTERS, 2011, 11 (06) :2219-2224
[6]  
Guo ZG, 2019, NAT CATAL, V2, P801, DOI 10.1038/s41929-019-0331-6
[7]   Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors [J].
Habisreutinger, Severin N. ;
Schmidt-Mende, Lukas ;
Stolarczyk, Jacek K. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (29) :7372-7408
[8]   Plasmonic Hot Carriers Imaging: Promise and Outlook [J].
Jang, Yu Jin ;
Chung, Kyungwha ;
Lee, June Sang ;
Choi, Chi Hun ;
Lim, Ju Won ;
Kim, Dong Ha .
ACS PHOTONICS, 2018, 5 (12) :4711-4723
[9]   Plasmonic Active "Hot Spots"-Confined Photocatalytic CO2 Reduction with High Selectivity for CH4 Production [J].
Jiang, Xiaoyi ;
Huang, Jindou ;
Bi, Zhenhua ;
Ni, Wenjun ;
Gurzadyan, Gagik ;
Zhu, Yongan ;
Zhang, Zhenyi .
ADVANCED MATERIALS, 2022, 34 (14)
[10]   Confining charge-transfer complex in a metal-organic framework for photocatalytic CO2 reduction in water [J].
Karmakar, Sanchita ;
Barman, Soumitra ;
Rahimi, Faruk Ahamed ;
Rambabu, Darsi ;
Nath, Sukhendu ;
Maji, Tapas Kumar .
NATURE COMMUNICATIONS, 2023, 14 (01)