Geometrization of the Satake transform for mod p Hecke algebras

被引:0
作者
Cass, Robert [1 ]
Xu, Yujie [2 ]
机构
[1] Univ Michigan, 530 Church St, Ann Arbor, MI 48109 USA
[2] Columbia Univ, 2990 Broadway, New York, NY 10027 USA
关键词
SCHUBERT VARIETIES; AFFINE GRASSMANNIANS; LOOP-GROUPS; REPRESENTATIONS; CLASSIFICATION; ISOMORPHISM; NORMALITY; MODULES;
D O I
10.1017/fms.2024.130
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We geometrize the mod p Satake isomorphism of Herzig and Henniart-Vign & eacute;ras using Witt vector affine flag varieties for reductive groups in mixed characteristic. We deduce this as a special case of a formula, stated in terms of the geometry of generalized Mirkovi & cacute;-Vilonen cycles, for the Satake transform of an arbitrary parahoric mod p Hecke algebra with respect to an arbitrary Levi subgroup. Moreover, we prove an explicit formula for the convolution product in an arbitrary parahoric mod p Hecke algebra. Our methods involve the constant term functors inspired from the geometric Langlands program, and we also treat the case of reductive groups in equal characteristic. We expect this to be a first step toward a geometrization of a mod p Local Langlands Correspondence.
引用
收藏
页数:22
相关论文
共 64 条
  • [1] Classification of mod p representations of SL(2, F)
    Abdellatif, Ramla
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2014, 142 (03): : 537 - 589
  • [2] INVERSE SATAKE ISOMORPHISM AND CHANGE OF WEIGHT
    Abe, N.
    Herzig, F.
    Vigneras, M. F.
    [J]. REPRESENTATION THEORY, 2022, 26 : 264 - 324
  • [3] A CLASSIFICATION OF IRREDUCIBLE ADMISSIBLE MOD p REPRESENTATIONS OF p-ADIC REDUCTIVE GROUPS
    Abe, N.
    Henniart, G.
    Herzig, F.
    Vigneras, M. -F.
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 30 (02) : 495 - 559
  • [4] [Anonymous], 1994, Cohomologie galoisienne
  • [5] [Anonymous], 1977, Lecture Notes in Mathematics, DOI DOI 10.1007/BFB0091526
  • [6] Anschutz J, 2022, Arxiv, DOI arXiv:2201.01234
  • [7] Projectivity of the Witt vector affine Grassmannian
    Bhatt, Bhargav
    Scholze, Peter
    [J]. INVENTIONES MATHEMATICAE, 2017, 209 (02) : 329 - 423
  • [8] THEOREMS ON ACTIONS OF ALGEBRAIC GROUPS
    BIALYNIC.A
    [J]. ANNALS OF MATHEMATICS, 1973, 98 (03) : 480 - 497
  • [9] BIALYNICKIBIRULA A, 1976, B ACAD POL SCI SMAP, V24, P667
  • [10] Geometric Eisenstein series
    Braverman, A
    Gaitsgory, D
    [J]. INVENTIONES MATHEMATICAE, 2002, 150 (02) : 287 - 384