DynHeter-DTA: Dynamic Heterogeneous Graph Representation for Drug-Target Binding Affinity Prediction

被引:0
|
作者
Li, Changli [1 ]
Li, Guangyue [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Artificial Intelligence, Nanjing 210044, Peoples R China
关键词
drug-target binding prediction; heterogeneous graph; graph neural networks; graph representation learning; NEURAL-NETWORKS;
D O I
10.3390/ijms26031223
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In drug development, drug-target affinity (DTA) prediction is a key indicator for assessing the drug's efficacy and safety. Despite significant progress in deep learning-based affinity prediction approaches in recent years, there are still limitations in capturing the complex interactions between drugs and target receptors. To address this issue, a dynamic heterogeneous graph prediction model, DynHeter-DTA, is proposed in this paper, which fully leverages the complex relationships between drug-drug, protein-protein, and drug-protein interactions, allowing the model to adaptively learn the optimal graph structures. Specifically, (1) in the data processing layer, to better utilize the similarities and interactions between drugs and proteins, the model dynamically adjusts the connection strengths between drug-drug, protein-protein, and drug-protein pairs, constructing a variable heterogeneous graph structure, which significantly improves the model's expressive power and generalization performance; (2) in the model design layer, considering that the quantity of protein nodes significantly exceeds that of drug nodes, an approach leveraging Graph Isomorphism Networks (GIN) and Self-Attention Graph Pooling (SAGPooling) is proposed to enhance prediction efficiency and accuracy. Comprehensive experiments on the Davis, KIBA, and Human public datasets demonstrate that DynHeter-DTA exceeds the performance of previous models in drug-target interaction forecasting, providing an innovative solution for drug-target affinity prediction.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Hierarchical graph representation learning for the prediction of drug-target binding affinity
    Chu, Zhaoyang
    Huang, Feng
    Fu, Haitao
    Quan, Yuan
    Zhou, Xionghui
    Liu, Shichao
    Zhang, Wen
    INFORMATION SCIENCES, 2022, 613 : 507 - 523
  • [2] GTAMP-DTA: Graph transformer combined with attention mechanism for drug-target binding affinity prediction
    Tian, Chuangchuang
    Wang, Luping
    Cui, Zhiming
    Wu, Hongjie
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2024, 108
  • [3] GraphCL-DTA: A Graph Contrastive Learning With Molecular Semantics for Drug-Target Binding Affinity Prediction
    Yang, Xinxing
    Yang, Genke
    Chu, Jian
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (08) : 4544 - 4552
  • [4] Multimodal contrastive representation learning for drug-target binding affinity prediction
    Zhang, Linlin
    Ouyang, Chunping
    Liu, Yongbin
    Liao, Yiming
    Gao, Zheng
    METHODS, 2023, 220 : 126 - 133
  • [5] SAM-DTA: a sequence -agnostic model for drug-target binding affinity prediction
    Hu, Zhiqiang
    Liu, Wenfeng
    Zhang, Chenbin
    Huang, Jiawen
    Zhang, Shaoting
    Yu, Huiqun
    Xiong, Yi
    Liu, Hao
    Ke, Song
    Hong, Liang
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (01)
  • [6] DTA-GTOmega: Enhancing Drug-Target Binding Affinity Prediction with Graph Transformers Using OmegaFold Protein Structures
    Quan, Lijun
    Wu, Jian
    Jiang, Yelu
    Pan, Deng
    Qiang, Lyu
    JOURNAL OF MOLECULAR BIOLOGY, 2025, 437 (06)
  • [7] HSGCL-DTA: Hybrid-scale Graph Contrastive Learning based Drug-Target Binding Affinity Prediction
    Ye, Hongyan
    Song, Yingying
    Wang, Binyu
    Wu, Lianlian
    He, Song
    Bo, Xiaochen
    Zhang, Zhongnan
    2023 IEEE 35TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2023, : 947 - 954
  • [8] GS-DTA: integrating graph and sequence models for predicting drug-target binding affinity
    Luo, Junwei
    Zhu, Ziguang
    Xu, Zhenhan
    Xiao, Chuanle
    Wei, Jingjing
    Shen, Jiquan
    BMC GENOMICS, 2025, 26 (01):
  • [9] Multidta: drug-target binding affinity prediction via representation learning and graph convolutional neural networks
    Deng, Jiejin
    Zhang, Yijia
    Pan, Yaohua
    Li, Xiaobo
    Lu, Mingyu
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (07) : 2709 - 2718
  • [10] Drug-Target Prediction Based on Dynamic Heterogeneous Graph Convolutional Network
    Xu, Peng
    Wei, Zhitao
    Li, Chuchu
    Yuan, Jiaqi
    Liu, Zaiyi
    Liu, Wenbin
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (11) : 6997 - 7005