A Bias-free Deep Learning Approach for Automated Sunspot Segmentation

被引:1
作者
Chen, Jing [1 ]
Gyenge, Norbert G. [2 ,4 ]
Jiang, Ye [3 ]
Erdelyi, Robertus [2 ,4 ,5 ]
Liu, Jiajia [6 ,7 ]
Wang, Yimin [1 ]
机构
[1] Qingdao Univ Sci & Technol, Sch Data Sci, Qingdao 266061, Peoples R China
[2] Hungarian Solar Phys Fdn HSPF, Gyula Bay Zoltan Solar Observ GSO, Petofiter 3, H-5700 Gyula, Hungary
[3] Qingdao Univ Sci & Technol, Sch Informat Sci & Technol, Qingdao, Peoples R China
[4] Univ Sheffield, Solar Phys & Space Plasma Res Ctr SP2RC, Sch Math & Phys Sci, Sheffield, England
[5] Eotvos Lorand Univ, Dept Astron, Budapest, Hungary
[6] Univ Sci & Technol China, Sch Earth & Space Sci, Natl Key Lab Deep Space Explorat, Deep Space Explorat Lab, Hefei 230026, Peoples R China
[7] Univ Sci & Technol China, CAS Ctr Excellence Comparat Planetol, CAS Key Lab Geospace Environm, Mengcheng Natl Geophys Observ, Hefei 230026, Peoples R China
基金
英国科学技术设施理事会; 中国国家自然科学基金;
关键词
SOLAR;
D O I
10.3847/1538-4357/adac5e
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Solar activities significantly influence space weather and the Earth's environment, necessitating accurate and efficient sunspot detection. This study explores deep learning methods to automate sunspot identification in solar satellite images, keeping personal bias to a minimum. Utilizing observations of the Solar Dynamics Observatory, we leverage active-region data from the Helioseismic Magnetic Imager active-region patches to locate sunspot groups detected between 2011 and 2023. The Morphological Active Contour Without Edges technique is applied to produce pseudo-labels, which are utilized to train the U-Net deep learning architecture, combining their strengths for robust segmentation. Evaluation metrics-including precision, recall, F1-score, intersection over union, and Dice coefficient-demonstrate the superior performance of U-Net. Our approach achieves a high Pearson correlation coefficient of 0.97 when compared with the sunspot area estimation of the Space Weather Prediction Center and 0.96 in comparison with the Debrecen Photoheliographic Data. This hybrid methodology provides a powerful tool for sunspot identification, offering the improved accuracy and efficiency crucial for space-weather prediction.
引用
收藏
页数:11
相关论文
共 33 条
[1]   Impact of Seasonal Snow-Cover Change on the Observed and Simulated State of the Atmospheric Boundary Layer in a High-Altitude Mountain Valley [J].
Adler, Bianca ;
Wilczak, James M. M. ;
Bianco, Laura ;
Bariteau, Ludovic ;
Cox, Christopher J. J. ;
de Boer, Gijs ;
Djalalova, Irina V. V. ;
Gallagher, Michael R. R. ;
Intrieri, Janet M. M. ;
Meyers, Tilden P. P. ;
Myers, Timothy A. A. ;
Olson, Joseph B. B. ;
Pezoa, Sergio ;
Sedlar, Joseph ;
Smith, Elizabeth ;
Turner, David D. D. ;
White, Allen B. B. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2023, 128 (12)
[2]  
akmak H., 2014, EXA, V37, P539, DOI DOI 10.1007/S10686-014-9381-6
[3]   On-line Tools for Solar Data Compiled at the Debrecen Observatory and Their Extensions with the Greenwich Sunspot Data [J].
Baranyi, T. ;
Gyori, L. ;
Ludmany, A. .
SOLAR PHYSICS, 2016, 291 (9-10) :3081-3102
[4]   The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs - Space-Weather HMI Active Region Patches [J].
Bobra, M. G. ;
Sun, X. ;
Hoeksema, J. T. ;
Turmon, M. ;
Liu, Y. ;
Hayashi, K. ;
Barnes, G. ;
Leka, K. D. .
SOLAR PHYSICS, 2014, 289 (09) :3549-3578
[5]   Sunspots Identification Through Mathematical Morphology [J].
Bourgeois, Slava ;
Barata, Teresa ;
Erdelyi, Robertus ;
Gafeira, Ricardo ;
Oliveira, Orlando .
SOLAR PHYSICS, 2024, 299 (02)
[6]   Large-scale pancreatic cancer detection via non-contrast CT and deep learning [J].
Cao, Kai ;
Xia, Yingda ;
Yao, Jiawen ;
Han, Xu ;
Lambert, Lukas ;
Zhang, Tingting ;
Tang, Wei ;
Jin, Gang ;
Jiang, Hui ;
Fang, Xu ;
Nogues, Isabella ;
Li, Xuezhou ;
Guo, Wenchao ;
Wang, Yu ;
Fang, Wei ;
Qiu, Mingyan ;
Hou, Yang ;
Kovarnik, Tomas ;
Vocka, Michal ;
Lu, Yimei ;
Chen, Yingli ;
Chen, Xin ;
Liu, Zaiyi ;
Zhou, Jian ;
Xie, Chuanmiao ;
Zhang, Rong ;
Lu, Hong ;
Hager, Gregory D. ;
Yuille, Alan L. ;
Lu, Le ;
Shao, Chengwei ;
Shi, Yu ;
Zhang, Qi ;
Liang, Tingbo ;
Zhang, Ling ;
Lu, Jianping .
NATURE MEDICINE, 2023, 29 (12) :3033-3043
[7]  
Chan T, 1999, LECT NOTES COMPUT SC, V1682, P141
[8]  
Chola C., 2022, Glob. Transit. Proc, V3, DOI [10.1016/j.gltp.2022.03.017, DOI 10.1016/J.GLTP.2022.03.017]
[9]   Automated McIntosh-Based classification of sunspot groups using MDI images [J].
Colak, T. ;
Qahwaji, R. .
SOLAR PHYSICS, 2008, 248 (02) :277-296
[10]  
Cox AN., 2000, Allen's astrophysical quantities, DOI [DOI 10.1007/978-1-4612-1186-0, 10.1063/1.1325201, DOI 10.1063/1.1325201]