Estimation of Forest Leaf Area Index Based on GEE Data Fusion Method

被引:0
作者
Liu, Xinyi [1 ]
He, Li [2 ,3 ]
He, Zhengwei [2 ,3 ]
Wei, Yun [2 ,3 ]
机构
[1] Chengdu Technol Univ, Sch Comp Engn, Chengdu 611730, Peoples R China
[2] Chengdu Univ Technol, State Key Lab Geohazard Prevent & Geoenvironm Prot, Chengdu 610059, Peoples R China
[3] Chengdu Univ Technol, Coll Geog & Planning, Chengdu 610059, Peoples R China
基金
中国国家自然科学基金;
关键词
Forestry; Vegetation mapping; Remote sensing; Estimation; Data integration; Optical sensors; Optical reflection; Land surface; Data models; Accuracy; Data fusion method; Google Earth Engine (GEE); Leaf Area Index (LAI); random forest; GOOGLE EARTH ENGINE; BIG DATA APPLICATIONS; ATMOSPHERIC CORRECTION; BIOPHYSICAL VARIABLES; ABOVEGROUND BIOMASS; VEGETATION INDEXES; LAI; VALIDATION; ALGORITHM; PRODUCTS;
D O I
10.1109/JSTARS.2025.3528429
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Implementing forest protection measures, such as afforestation, can be an effective approach toward slowing down the increase of CO2 concentration and attaining carbon neutrality. The estimation of forest parameters is of great significance in understanding regional and global climate change patterns, and the Forest Leaf Area Index (LAI) is a crucial parameter. Current LAI products are mostly generated by moderate-resolution remote sensing data which does not meet the precision requirements for mountain forest ecosystems. To overcome this issue, there is an urgent need for higher resolution LAI data. This article proposes a data fusion method to map LAI in Wolong Nature Reserve that utilizes Sentinel-2 reflectance data, solar sensor geometry parameters, and vegetation indices extracted from the Google Earth Engine platform, along with canopy height data derived from canopy height estimation models in previous studies, combined with GLASS LAI V6 to estimate LAI using the random forest algorithm. The resulting LAI distribution map was plotted at a resolution of 20 m. The study demonstrated that incorporating canopy heights into the estimation model led to an R-2 model accuracy of greater than 0.83. The 20-m resolution LAI map increased spatial details compared to the moderate-resolution LAI map, making it more suitable for mountain forest ecosystems that exhibit significant spatial heterogeneity.
引用
收藏
页码:4510 / 4524
页数:15
相关论文
共 63 条
  • [1] Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review
    Amani, Meisam
    Ghorbanian, Arsalan
    Ahmadi, Seyed Ali
    Kakooei, Mohammad
    Moghimi, Armin
    Mirmazloumi, S. Mohammad
    Moghaddam, Sayyed Hamed Alizadeh
    Mahdavi, Sahel
    Ghahremanloo, Masoud
    Parsian, Saeid
    Wu, Qiusheng
    Brisco, Brian
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 (13) : 5326 - 5350
  • [2] A generalized supervised classification scheme to produce provincial wetland inventory maps: an application of Google Earth Engine for big geo data processing
    Amani, Meisam
    Brisco, Brian
    Afshar, Majid
    Mirmazloumi, S. Mohammad
    Mahdavi, Sahel
    Mirzadeh, Sayyed Mohammad Javad
    Huang, Weimin
    Granger, Jean
    [J]. BIG EARTH DATA, 2019, 3 (04) : 378 - 394
  • [3] Arino O, 2008, ESA BULL-EUR SPACE, P24
  • [4] Mapped aboveground carbon stocks to advance forest conservation and recovery in Malaysian Borneo
    Asner, Gregory P.
    Brodrick, Philip G.
    Philipson, Christopher
    Vaughn, Nicolas R.
    Martin, Roberta E.
    Knapp, David E.
    Heckler, Joseph
    Evans, Luke J.
    Juckes, Tommaso
    Goossens, Benoit
    Stark, Danica J.
    Reynolds, Glen
    Ong, Robert
    Renneboog, Nathan
    Kugan, Fred
    Coomes, David A.
    [J]. BIOLOGICAL CONSERVATION, 2018, 217 : 289 - 310
  • [5] GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production
    Baret, F.
    Weiss, M.
    Lacaze, R.
    Camacho, F.
    Makhmara, H.
    Pacholcyzk, P.
    Smets, B.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2013, 137 : 299 - 309
  • [6] Random forest in remote sensing: A review of applications and future directions
    Belgiu, Mariana
    Dragut, Lucian
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 114 : 24 - 31
  • [7] Copernicus Global Land Cover Layers-Collection 2
    Buchhorn, Marcel
    Lesiv, Myroslava
    Tsendbazar, Nandin-Erdene
    Herold, Martin
    Bertels, Luc
    Smets, Bruno
    [J]. REMOTE SENSING, 2020, 12 (06)
  • [8] Cao F., 2021, Forestry Econ., V43, P5
  • [9] Retrieval of canopy biophysical variables from bidirectional reflectance -: Using prior information to solve the ill-posed inverse problem
    Combal, B
    Baret, F
    Weiss, M
    Trubuil, A
    Macé, D
    Pragnère, A
    Myneni, R
    Knyazikhin, Y
    Wang, L
    [J]. REMOTE SENSING OF ENVIRONMENT, 2003, 84 (01) : 1 - 15
  • [10] [邓一荣 Deng Yirong], 2023, [地学前缘, Earth Science Frontiers], V30, P429