Beekeeping suitability prediction based on an adaptive neuro-fuzzy inference system and apiary level data

被引:0
作者
Kamga, Guy A. Fotso [1 ]
Bouroubi, Yacine [1 ]
Germain, Mickael [1 ]
Martin, Georges [2 ]
Bitjoka, Laurent [3 ]
机构
[1] Univ Sherbrooke, Dept Geomatique Appliquee, 2500 Bou Univ, Quebec City, PQ J1K 2R1, Canada
[2] Ctr Rech Sci Anim Deschambault CRSAD, 120-A Chemin Roy, Quebec City, PQ G0A 1S0, Canada
[3] Univ Ngaoundere, Lab Energy Signal Imagery & Automat LESIA, Ngaoundere, Cameroon
关键词
Adaptive neuro-fuzzy inference system; Subtractive clustering; Suitability prediction; Beekeeping activity; LAND-USE; EXPERT-SYSTEM; HONEY-BEES; ANFIS; OPTIMIZATION; TEMPERATURE; IMPACTS; DECLINE;
D O I
10.1016/j.ecoinf.2025.103015
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The study employs a predictive modelling approach using a fuzzy inference system to assess the beekeeping potential of a geographic area. Specifically, an adaptive neuro-fuzzy inference system with subtractive clustering (ANFIS-SC) was utilized, incorporating six input variables that influence Apis mellifera health and productivity, and field data as the output variable reflecting the state of a colony. The results demonstrate the model's effectiveness in predicting the suitability of areas for beekeeping. Sensitivity analysis highlighted the significant effects of relative humidity on the model's output. The research underscores the importance of data quality, particularly in determining the local land cover quality index (LLCQI), on the outcomes. This study highlights the role of data science in enhancing precision in beekeeping and proposes its integration into management practices to support honey bee health.
引用
收藏
页数:15
相关论文
共 86 条
[1]   An adaptive neuro-fuzzy inference system for assessing runway friction decay [J].
Abbondati, Francesco ;
Biancardo, Salvatore Antonio ;
Veropalumbo, Rosa ;
Chen, Xinqiang ;
'Acqua, Gianluca Dell .
MEASUREMENT, 2023, 213
[2]   A review of impacts of temperature and relative humidity on various activities of honey bees [J].
Abou-Shaara, H. F. ;
Owayss, A. A. ;
Ibrahim, Y. Y. ;
Basuny, N. K. .
INSECTES SOCIAUX, 2017, 64 (04) :455-463
[3]   Predictability performance enhancement for suspended sediment in rivers: Inspection of newly developed hybrid adaptive neuro-fuzzy model [J].
Adnan, Rana Muhammad ;
Yaseen, Zaher Mundher ;
Heddam, Salim ;
Shahid, Shamsuddin ;
Sadeghi-Niaraki, Aboalghasem ;
Kisi, Ozgur .
INTERNATIONAL JOURNAL OF SEDIMENT RESEARCH, 2022, 37 (03) :383-398
[4]   Modeling of migratory beekeeper behaviors with machine learning approach using meteorological and environmental variables: The case of Turkey [J].
Albayrak, Ahmet ;
Ceven, Suleyman ;
Bayir, Raif .
ECOLOGICAL INFORMATICS, 2021, 66
[5]   Recent developments on precision beekeeping: A systematic literature review [J].
Alleri, Maria ;
Amoroso, Salvatore ;
Catania, Pietro ;
Lo Verde, Gabriella ;
Orlando, Santo ;
Ragusa, Ernesto ;
Sinacori, Milko ;
Vallone, Mariangela ;
Vella, Azzurra .
JOURNAL OF AGRICULTURE AND FOOD RESEARCH, 2023, 14
[6]   Adaptive neuro-fuzzy inference systems for epidemiological analysis of soybean rust [J].
Alves, Marcelo de Carvalho ;
Pozza, Edson Ampelio ;
do Bonfim Costa, Joao de Cassia ;
de Carvalho, Luiz Gonsaga ;
Alves, Luciana Sanches .
ENVIRONMENTAL MODELLING & SOFTWARE, 2011, 26 (09) :1089-1096
[7]  
[Anonymous], 2021, Statistical Overview of the Canadian Fruit Industry 2020
[8]  
[Anonymous], [No title captured]
[9]  
[Anonymous], 2011, Data mining: concepts, models, methods, and algorithms
[10]   Modelling daily weight variation in honey bee hives [J].
Arias-Calluari, Karina ;
Colin, Theotime ;
Latty, Tanya ;
Myerscough, Mary ;
Altmann, Eduardo G. G. .
PLOS COMPUTATIONAL BIOLOGY, 2023, 19 (03)