A Successive Gap Constraint Linearization Method for Optimal Control Problems with Equilibrium Constraints

被引:0
作者
Lin, Kangyu [1 ]
Ohtsuka, Toshiyuki [1 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Dept Syst Sci, Kyoto, Japan
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 18期
关键词
Optimization and Model Predictive Control; Optimal Control; Hybrid Systems; Variational Inequalities; Gap Function; MATHEMATICAL PROGRAMS; OPTIMIZATION; ALGORITHM;
D O I
10.1016/j.ifacol.2024.09.026
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, we propose a novel gap-constraint-based reformulation for optimal control problems with equilibrium constraints (OCPECs). We show that the proposed reformulation generates a new constraint system equivalent to the original one but more concise and with favorable differentiability. Moreover, constraint regularity can be recovered by a relaxation strategy. We show that the gap constraint and its gradient can be evaluated efficiently. We then propose a successive gap constraint linearization method to solve the discretized OCPEC. We also provide an intuitive geometric interpretation of the gap constraint. Numerical experiments validate the effectiveness of the proposed reformulation and solution method. Copyright (C) 2024 The Authors.
引用
收藏
页码:165 / 172
页数:8
相关论文
共 19 条
  • [1] CasADi: a software framework for nonlinear optimization and optimal control
    Andersson, Joel A. E.
    Gillis, Joris
    Horn, Greg
    Rawlings, James B.
    Diehl, Moritz
    [J]. MATHEMATICAL PROGRAMMING COMPUTATION, 2019, 11 (01) : 1 - 36
  • [2] VARIATIONAL-PRINCIPLES FOR VARIATIONAL-INEQUALITIES
    AUCHMUTY, G
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1989, 10 (9-10) : 863 - 874
  • [3] Betts JT, 2010, ADV DES CONTROL, P411
  • [4] Dempe S, 2023, Arxiv, DOI arXiv:2305.19786
  • [5] Facchinei F., 2003, FINITE DIMENSIONAL V
  • [6] An online active set strategy to overcome the limitations of explicit MPC
    Ferreau, H. J.
    Bock, H. G.
    Diehl, M.
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2008, 18 (08) : 816 - 830
  • [7] qpOASES: a parametric active-set algorithm for quadratic programming
    Ferreau, Hans Joachim
    Kirches, Christian
    Potschka, Andreas
    Bock, Hans Georg
    Diehl, Moritz
    [J]. MATHEMATICAL PROGRAMMING COMPUTATION, 2014, 6 (04) : 327 - 363
  • [8] EQUIVALENT DIFFERENTIABLE OPTIMIZATION PROBLEMS AND DESCENT METHODS FOR ASYMMETRIC VARIATIONAL INEQUALITY PROBLEMS
    FUKUSHIMA, M
    [J]. MATHEMATICAL PROGRAMMING, 1992, 53 (01) : 99 - 110
  • [9] Theoretical and numerical comparison of relaxation methods for mathematical programs with complementarity constraints
    Hoheisel, Tim
    Kanzow, Christian
    Schwartz, Alexandra
    [J]. MATHEMATICAL PROGRAMMING, 2013, 137 (1-2) : 257 - 288
  • [10] FBstab: A proximally stabilized semismooth algorithm for convex quadratic programming
    Liao-McPherson, Dominic
    Kolmanovsky, Ilya
    [J]. AUTOMATICA, 2020, 113