Hierarchical Deep Reinforcement Learning for Computation Offloading in Autonomous Multi-Robot Systems

被引:0
|
作者
Gao, Wen [1 ]
Yu, Zhiwen [1 ]
Wang, Liang [1 ]
Cui, Helei [1 ]
Guo, Bin [1 ]
Xiong, Hui [2 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Peoples R China
[2] Hong Kong Univ Sci & Technol Guangzhou, Thust Artificial Intelligence, Guangzhou 511453, Peoples R China
来源
IEEE ROBOTICS AND AUTOMATION LETTERS | 2025年 / 10卷 / 01期
基金
中国国家自然科学基金;
关键词
Robots; Graphics processing units; Resource management; Computational modeling; Loading; Processor scheduling; Load modeling; Delays; Deep reinforcement learning; Collaboration; Computation offloading; multi-robot systems; reinforcement learning;
D O I
10.1109/LRA.2024.3511408
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
To ensure system responsiveness, some compute-intensive tasks are usually offloaded to cloud or edge computing devices. In environments where connection to external computing facilities is unavailable, computation offloading among members within an autonomous multi-robot system (AMRS) becomes a solution. The challenge lies in how to maximize the use of other members' idle resources without disrupting their local computation tasks. Therefore, this study proposes HRL-AMRS, a hierarchical deep reinforcement learning framework designed to distribute computational loads and reduce the processing time of computational tasks within an AMRS. In this framework, the high-level must consider the impact of data loading scales determined by low-level under varying computational device states on the actual processing times. In addition, the low-level employs Long Short-Term Memory (LSTM) networks to enhance the understanding of time-series states of computing devices. Experimental results show that, across various task sizes and numbers of robots, the framework reduces processing times by an average of 4.32% compared to baseline methods.
引用
收藏
页码:540 / 547
页数:8
相关论文
共 50 条
  • [1] Computation Offloading via Multi-Agent Deep Reinforcement Learning in Aerial Hierarchical Edge Computing Systems
    Wang, Yuanyuan
    Zhang, Chi
    Ge, Taiheng
    Pan, Miao
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (06): : 5253 - 5266
  • [2] Hierarchical Multi-Robot Pursuit with Deep Reinforcement Learning and Navigation Planning
    Chen, Wenzhang
    Zhu, Yuanheng
    39TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION, YAC 2024, 2024, : 1274 - 1280
  • [3] Caching-Enabled Computation Offloading in Multi-Region MEC Network via Deep Reinforcement Learning
    Yang, Song
    Liu, Jintian
    Zhang, Fei
    Li, Fan
    Chen, Xu
    Fu, Xiaoming
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (21) : 21086 - 21098
  • [4] Hierarchical Deep Reinforcement Learning for Multi-robot Cooperation in Partially Observable Environment
    Liang, Zhixuan
    Cao, Jiannong
    Lin, Wanyu
    Chen, Jinlin
    Xu, Huafeng
    2021 IEEE THIRD INTERNATIONAL CONFERENCE ON COGNITIVE MACHINE INTELLIGENCE (COGMI 2021), 2021, : 272 - 281
  • [5] A review of developments in reinforcement learning for multi-robot systems
    Ma, Lei, 1600, Science Press (49): : 1032 - 1044
  • [6] Dynamic Edge Computation Offloading for Internet of Vehicles With Deep Reinforcement Learning
    Yao, Liang
    Xu, Xiaolong
    Bilal, Muhammad
    Wang, Huihui
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (11) : 12991 - 12999
  • [7] Distributed and Collective Deep Reinforcement Learning for Computation Offloading: A Practical Perspective
    Qiu, Xiaoyu
    Zhang, Weikun
    Chen, Wuhui
    Zheng, Zibin
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2021, 32 (05) : 1085 - 1101
  • [8] Queue Formation and Obstacle Avoidance Navigation Strategy for Multi-Robot Systems Based on Deep Reinforcement Learning
    Gao, Tianyi
    Li, Zhanlan
    Xiong, Zhixin
    Wen, Ling
    Tian, Kai
    Cai, Kewei
    IEEE ACCESS, 2025, 13 : 14083 - 14100
  • [9] Multi-Agent Deep Reinforcement Learning for Computation Offloading and Interference Coordination in Small Cell Networks
    Huang, Xiaoyan
    Leng, Supeng
    Maharjan, Sabita
    Zhang, Yan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (09) : 9282 - 9293
  • [10] Multiagent Deep Reinforcement Learning for Vehicular Computation Offloading in IoT
    Zhu, Xiaoyu
    Luo, Yueyi
    Liu, Anfeng
    Bhuiyan, Md Zakirul Alam
    Zhang, Shaobo
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (12) : 9763 - 9773