Loss tolerance quantum key distribution based on the signal extraction model and advantage distillation technology

被引:0
|
作者
Lu, Yi-fei [1 ]
Jiang, Mu-sheng [1 ]
Wang, Yang [1 ]
Zhou, Yan-yang [1 ]
Li, Jia-ji [1 ]
Zhou, Yu [1 ]
Jiang, Xiao-lei [1 ]
Zhang, Hai-long [1 ]
Wang, Xiang [1 ]
Guo, Yuyao [2 ]
Zhou, Linjie [2 ]
Zhou, Chun [1 ]
Li, Hong-wei [1 ]
Bao, Wan-su [1 ]
机构
[1] IEU, Henan Key Lab Quantum Informat & Cryptog, Zhengzhou 450001, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Elect Engn, Shanghai Key Lab Nav & Locat Serv, State Key Lab Adv Opt Commun Syst & Networks, Shanghai 200240, Peoples R China
来源
OPTICS EXPRESS | 2024年 / 32卷 / 23期
关键词
ATOMIC ENSEMBLES; REPEATERS; SECURITY;
D O I
10.1364/OE.540592
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Compared with traditional networks, quantum key distribution (QKD) offers the ultimate resources, allowing two remote users to share secret symmetric keys regardless of the capabilities of eavesdroppers. However, the widespread application of commercial QKD is still challenging due to the low photon detection efficiency and the extremely high transmission loss. Here we demonstrate a fully commercial phase-encoding QKD system using a signal extraction model and advantage distillation technology to suppress detector noise and perform real-time pre-error correction. 1.89 x 10-10 in the asymptotic case and 7.43 x 10-12 in the nonasymptotic case secret key bits per pulse are achieved with a total loss of 70.05 dB. This method not only increases the transmission loss tolerance but also provides a more realistic deployment of quantum communication. (c) 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:41511 / 41523
页数:13
相关论文
共 50 条
  • [31] Unconstrained Capacities of Quantum Key Distribution and Entanglement Distillation for Pure-Loss Bosonic Broadcast Channels
    Takeoka, Masahiro
    Seshadreesan, Kaushik P.
    Wilde, Mark M.
    PHYSICAL REVIEW LETTERS, 2017, 119 (15)
  • [32] On a model of the quantum key distribution
    Volovich, IV
    Trushechkin, AS
    DOKLADY MATHEMATICS, 2005, 72 (02) : 795 - 797
  • [33] Loss Control-Based Key Distribution under Quantum Protection
    Kirsanov, Nikita
    Pastushenko, Valeria
    Kodukhov, Aleksei
    Aliev, Aziz
    Yarovikov, Michael
    Strizhak, Daniel
    Zarubin, Ilya
    Smirnov, Alexander
    Pflitsch, Markus
    Vinokur, Valerii
    ENTROPY, 2024, 26 (06)
  • [34] Blockwise Maximization of the Secret Key with Signal Breaks in Satellite-Based Quantum Key Distribution
    Ivchenko E.
    Chernov A.
    Khmelev A.
    Kurochkin V.
    Russian Microelectronics, 2023, 52 (Suppl 1) : S317 - S321
  • [35] A Secure Communication Network Infrastructure Based on Quantum Key Distribution Technology
    Tanizawa, Yoshimichi
    Takahashi, Ririka
    Sato, Hideaki
    Dixon, Alexander R.
    Kawamura, Shinichi
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2016, E99B (05) : 1054 - 1069
  • [36] The security and recent technology of quantum key distribution
    Wang X.-B.
    Ying H.
    Ma H.-X.
    Peng C.-Z.
    Yang T.
    Pan J.-W.
    Frontiers of Physics in China, 2006, 1 (3): : 251 - 255
  • [37] Semiquantum key distribution with high quantum noise tolerance
    Amer, Omar
    Krawec, Walter O.
    PHYSICAL REVIEW A, 2019, 100 (02)
  • [38] Research on the Key Technology of Web Data Extraction and Mining Based on the Probability Distribution
    Yang, Jinqiao
    Yang, Binghui
    Sun, Qi
    Yan, Shi
    Miao, Yuxin
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [39] A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing
    Walenta, N.
    Burg, A.
    Caselunghe, D.
    Constantin, J.
    Gisin, N.
    Guinnard, O.
    Houlmann, R.
    Junod, P.
    Korzh, B.
    Kulesza, N.
    Legre, M.
    Lim, C. W.
    Lunghi, T.
    Monat, L.
    Portmann, C.
    Soucarros, M.
    Thew, R. T.
    Trinkler, P.
    Trolliet, G.
    Vannel, F.
    Zbinden, H.
    NEW JOURNAL OF PHYSICS, 2014, 16