New notes on the equation d(n) = d(φ(n)) and the inequality d(n) > d(φ(n))

被引:1
作者
Bellaouar, Djamel [1 ]
Togbe, Alain [2 ]
Jakimczuk, Rafael [3 ]
机构
[1] Univ 8 Mai 1945 Guelma, Dept Math, BP 401, Guelma 24000, Algeria
[2] Purdue Univ Northwest, Dept Math & Stat, 2200 169th St, Hammond, IN 46323 USA
[3] Univ Nacl Lujan, Div Matemat, Buenos Aires, Argentina
关键词
Divisor function; Euler's function; prime numbers; Diophantine equations;
D O I
10.1515/ms-2024-0081
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let d(n) and phi(n) denote the number of positive divisors of n and the Euler's phi function of n, respectively. In this paper, we prove various (conditional and unconditional) results about the solvability of the Diophantine equation d(n) = d(phi(n)) and a related inequality. For further research, we present some open problems.
引用
收藏
页码:1127 / 1146
页数:20
相关论文
共 9 条
  • [1] A class of solutions of the equation d (n2) = d (φ (n))
    Amroune, Zahra
    Bellaouar, Djamel
    Boudaoud, Abdelmadjid
    [J]. NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2023, 29 (02) : 284 - 309
  • [2] Notes on the Equation d(n) = d(φ(n)) and Related Inequalities
    Bellaouar, Djamel
    Boudaoud, Abdelmadjid
    Jakimczuk, Rafael
    [J]. MATHEMATICA SLOVACA, 2023, 73 (03) : 613 - 632
  • [3] De Koninck J. M., 2007, American Mathematical Society, Providence
  • [4] ON A SEQUENCE FORMED BY ITERATING A DIVISOR OPERATOR
    Djamel, Bellaouar
    Abdelmadjid, Boudaoud
    Ozer, Ozen
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2019, 69 (04) : 1177 - 1196
  • [5] Large Sophie Germain primes
    Dubner, H
    [J]. MATHEMATICS OF COMPUTATION, 1996, 65 (213) : 393 - 396
  • [6] Nathanson M., 2000, Elementary Methods in Number Theory
  • [7] SANdor J., 2002, Geometric Theorems, Diophantine Equations, and Arithmetic Functions
  • [8] On certain equations and inequalities involving the arithmetical functions '(n) and d(n) - II
    Sandor, Jozsef
    [J]. NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2023, 29 (01) : 130 - 136
  • [9] On certain equations and inequalities involving the arithmetical functions φ(n) and d(n)
    Sandor, Jozsef
    Bhattacharjee, Saunak
    [J]. NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2022, 28 (02) : 376 - 379