A Local Gaussian Process Regression Approach to Frequency Response Function Estimation

被引:0
作者
Fang, Xiaozhu [1 ,2 ]
Xu, Yu [1 ,2 ]
Chen, Tianshi [1 ,2 ]
机构
[1] Chinese Univ Hong Kong, Sch Data Sci, Shenzhen 518172, Peoples R China
[2] Chinese Univ Hong Kong, Shenzhen Res Inst Big Data, Shenzhen 518172, Peoples R China
关键词
system identification; frequency response function; local method; complex Gaussian processes; kernel design;
D O I
10.1016/j.ifacol.2024.08.514
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Frequency response function (FRF) estimation is a classical subject in system Identification. In the past two decades, there have been remarkable advances in developing local methods for this subject, e.g., the local polynomial method, local rational method, and iterative local rational method. The recent concentrations for local methods are two issues: the model order selection and the Identification of lightly damped systems. To address these two issues, we propose a new local method called local Gaussian process regression (LGPR). We show that the frequency response function locally is either analytic or resonant, and this prior knowledge can be embedded into a kernel-based regularized estimate through a dot-product kernel plus a resonance kernel induced by a second-order resonant system. The LGPR provides a new route to tackle the aforementioned issues. In the numerical simulations, the LGPR shows the best FRF estimation accuracy compared with the existing local methods, and moreover, the LGPR is more robust with respect to sample size and noise level. Copyright (c) 2024 The Authors.
引用
收藏
页码:115 / 120
页数:6
相关论文
共 16 条
[1]   On the estimation of transfer functions, regularizations and Gaussian processes-Revisited [J].
Chen, Tianshi ;
Ohlsson, Henrik ;
Ljung, Lennart .
AUTOMATICA, 2012, 48 (08) :1525-1535
[2]   User-friendly nonlinear nonparametric estimation framework for vibro-acoustic industrial measurements with multiple inputs [J].
Csurcsia, Peter Zoltan ;
Peeters, Bart ;
Schoukens, Johan .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 145
[3]  
Gamelin T.W., 2003, Complex Analysis
[4]  
Geerardyn E., 2016, Development of User-Friendly System Identification Techniques
[5]   FRF estimation using multiple kernel-based regularisation [J].
Hallemans, Noel ;
Pintelon, Rik ;
Joukovsky, Boris ;
Peumans, Dries ;
Lataire, John .
AUTOMATICA, 2022, 136
[6]  
Latarie J., 2016, Automatica, V52, P217
[7]  
Ljung L., 1999, System identification: Theory for the user
[8]  
McKelvey T., 2012, IFAC Proceedings, V45, P49
[9]   Kernel methods in system identification, machine learning and function estimation: A survey [J].
Pillonetto, Gianluigi ;
Dinuzzo, Francesco ;
Chen, Tianshi ;
De Nicolao, Giuseppe ;
Ljung, Lennart .
AUTOMATICA, 2014, 50 (03) :657-682
[10]  
Pintelon R, 2012, System identification: a frequency domain approach, Vsecond