SAMCT: Segment Any CT Allowing Labor-Free Task-Indicator Prompts

被引:2
作者
Lin, Xian [1 ]
Xiang, Yangyang [1 ]
Wang, Zhehao [1 ]
Cheng, Kwang-Ting [2 ]
Yan, Zengqiang [1 ]
Yu, Li [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan 430074, Peoples R China
[2] Hong Kong Univ Sci & Technol, Sch Engn, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Image segmentation; Computed tomography; Tuning; Decoding; Transformers; Convolution; Convolutional neural networks; Training; Encoding; Accuracy; CT; foundation model; labor-free prompt; medical image segmentation; SAM; IMAGE SEGMENTATION; NET;
D O I
10.1109/TMI.2024.3493456
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Segment anything model (SAM), a foundation model with superior versatility and generalization across diverse segmentation tasks, has attracted widespread attention in medical imaging. However, it has been proved that SAM would encounter severe performance degradation due to the lack of medical knowledge in training and local feature encoding. Though several SAM-based models have been proposed for tuning SAM in medical imaging, they still suffer from insufficient feature extraction and highly rely on high-quality prompts. In this paper, we propose a powerful foundation model SAMCT allowing labor-free prompts and train it on a collected large CT dataset consisting of 1.1M CT images and 5M masks from public datasets. Specifically, based on SAM, SAMCT is further equipped with a U-shaped CNN image encoder, a cross-branch interaction module, and a task-indicator prompt encoder. The U-shaped CNN image encoder works in parallel with the ViT image encoder in SAM to supplement local features. Cross-branch interaction enhances the feature expression capability of the CNN image encoder and the ViT image encoder by exchanging global perception and local features from one to the other. The task-indicator prompt encoder is a plug-and-play component to effortlessly encode task-related indicators into prompt embeddings. In this way, SAMCT can work in an automatic manner in addition to the semi-automatic interactive strategy in SAM. Extensive experiments demonstrate the superiority of SAMCT against the state-of-the-art task-specific and SAM-based medical foundation models on various tasks. The code, data, and model checkpoints are available at https://github.com/xianlin7/SAMCT.
引用
收藏
页码:1386 / 1399
页数:14
相关论文
共 65 条
[1]  
Kohl SAA, 2019, Arxiv, DOI arXiv:1905.13077
[2]  
Ahmed A. A., 2020, Clin. Radiol., V75, P479
[3]   The Medical Segmentation Decathlon [J].
Antonelli, Michela ;
Reinke, Annika ;
Bakas, Spyridon ;
Farahani, Keyvan ;
Kopp-Schneider, Annette ;
Landman, Bennett A. ;
Litjens, Geert ;
Menze, Bjoern ;
Ronneberger, Olaf ;
Summers, Ronald M. ;
van Ginneken, Bram ;
Bilello, Michel ;
Bilic, Patrick ;
Christ, Patrick F. ;
Do, Richard K. G. ;
Gollub, Marc J. ;
Heckers, Stephan H. ;
Huisman, Henkjan ;
Jarnagin, William R. ;
McHugo, Maureen K. ;
Napel, Sandy ;
Pernicka, Jennifer S. Golia ;
Rhode, Kawal ;
Tobon-Gomez, Catalina ;
Vorontsov, Eugene ;
Meakin, James A. ;
Ourselin, Sebastien ;
Wiesenfarth, Manuel ;
Arbelaez, Pablo ;
Bae, Byeonguk ;
Chen, Sihong ;
Daza, Laura ;
Feng, Jianjiang ;
He, Baochun ;
Isensee, Fabian ;
Ji, Yuanfeng ;
Jia, Fucang ;
Kim, Ildoo ;
Maier-Hein, Klaus ;
Merhof, Dorit ;
Pai, Akshay ;
Park, Beomhee ;
Perslev, Mathias ;
Rezaiifar, Ramin ;
Rippel, Oliver ;
Sarasua, Ignacio ;
Shen, Wei ;
Son, Jaemin ;
Wachinger, Christian ;
Wang, Liansheng .
NATURE COMMUNICATIONS, 2022, 13 (01)
[4]   The Liver Tumor Segmentation Benchmark (LiTS) [J].
Bilic, Patrick ;
Christ, Patrick ;
Li, Hongwei Bran ;
Vorontsov, Eugene ;
Ben-Cohen, Avi ;
Kaissis, Georgios ;
Szeskin, Adi ;
Jacobs, Colin ;
Mamani, Gabriel Efrain Humpire ;
Chartrand, Gabriel ;
Lohoefer, Fabian ;
Holch, Julian Walter ;
Sommer, Wieland ;
Hofmann, Felix ;
Hostettler, Alexandre ;
Lev-Cohain, Naama ;
Drozdzal, Michal ;
Amitai, Michal Marianne ;
Vivanti, Refael ;
Sosna, Jacob ;
Ezhov, Ivan ;
Sekuboyina, Anjany ;
Navarro, Fernando ;
Kofler, Florian ;
Paetzold, Johannes C. ;
Shit, Suprosanna ;
Hu, Xiaobin ;
Lipkova, Jana ;
Rempfler, Markus ;
Piraud, Marie ;
Kirschke, Jan ;
Wiestler, Benedikt ;
Zhang, Zhiheng ;
Huelsemeyer, Christian ;
Beetz, Marcel ;
Ettlinger, Florian ;
Antonelli, Michela ;
Bae, Woong ;
Bellver, Miriam ;
Bi, Lei ;
Chen, Hao ;
Chlebus, Grzegorz ;
Dam, Erik B. ;
Dou, Qi ;
Fu, Chi-Wing ;
Georgescu, Bogdan ;
Giro-I-Nieto, Xavier ;
Gruen, Felix ;
Han, Xu ;
Heng, Pheng-Ann .
MEDICAL IMAGE ANALYSIS, 2023, 84
[5]  
Cao S, 2023, Arxiv, DOI arXiv:2308.06444
[6]   AAU-Net: An Adaptive Attention U-Net for Breast Lesions Segmentation in Ultrasound Images [J].
Chen, Gongping ;
Li, Lei ;
Dai, Yu ;
Zhang, Jianxun ;
Yap, Moi Hoon .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (05) :1289-1300
[7]  
Chen J., 2021, PREPRINT
[8]  
Cheng JL, 2023, Arxiv, DOI arXiv:2308.16184
[9]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[10]   CPFNet: Context Pyramid Fusion Network for Medical Image Segmentation [J].
Feng, Shuanglang ;
Zhao, Heming ;
Shi, Fei ;
Cheng, Xuena ;
Wang, Meng ;
Ma, Yuhui ;
Xiang, Dehui ;
Zhu, Weifang ;
Chen, Xinjian .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (10) :3008-3018