Growth of zinc oxide nanowires by a hot water deposition method

被引:3
作者
Saadi, Nawzat S. [1 ,2 ]
Hassan, Laylan B. [1 ,2 ]
Sayem, S. M. [1 ]
More, Karren L. [3 ]
Karabacak, Tansel [1 ]
机构
[1] Univ Arkansas Little Rock, Sch Phys Sci, 2801 South Univ Ave, Little Rock, AR 72204 USA
[2] Univ Duhok UoD, Dept Phys, 1006 AJ, Duhok 1006, Iraq
[3] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, 1 Bethel Valley Rd, Oakridge, TN 37830 USA
基金
美国国家科学基金会;
关键词
metal oxide nanostructures; zinc oxide; nanowires; deposition; hot water treatment; substrate; low temperature; NANOSTRUCTURES;
D O I
10.1088/1361-6528/ad86c9
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Recently, various methods have been developed for synthesizing zinc oxide (ZnO)nanostructures, including physical and chemical vapor deposition, as well as wet chemistry.These common methods require either high temperature, high vacuum, or toxic chemicals. Inthis study, we report the growth of zinc oxide ZnO nanowires by a new hot water deposition(HWD) method on various types of substrates, including copper plates, foams, and meshes, aswell as on indium tin oxide (ITO)-coated glasses (ITO/glass). HWD is derived from the hotwater treatment (HWT) method, which involves immersing piece(s) of metal and substrate(s) inhot deionized water and does not require any additives or catalysts. Metal acts as the source ofmetal oxide molecules that migrate in water and deposit on the substrate surface to form metaloxide nanostructures (MONSTRs). The morphological and crystallographic analyses of thesource-metals and substrates revealed the presence of uniformly crystalline ZnO nanorods afterthe HWD. In addition, the growth mechanism of ZnO nanowires using HWD is discussed. Thisprocess is simple, inexpensive, low temperature, scalable, and eco-friendly. Moreover, HWDcan be used to deposit a large variety of MONSTRs on almost any type of substrate material orgeometry.
引用
收藏
页数:8
相关论文
共 49 条
[1]  
Ahmed N., 2024, P ASME AER STRUCT ST, V8774, DOI [10.1115/SSDM2024-121410, DOI 10.1115/SSDM2024-121410]
[2]   ZnO size and shape effect on antibacterial activity and cytotoxicity profile [J].
Babayevska, Nataliya ;
Przysiecka, Lucja ;
Iatsunskyi, Igor ;
Nowaczyk, Grzegorz ;
Jarek, Marcin ;
Janiszewska, Ewa ;
Jurga, Stefan .
SCIENTIFIC REPORTS, 2022, 12 (01)
[3]   Fluorescence Invigoration in Carbon-Incorporated Zinc Oxide Nanowires from Passage of Field Emission Electrons [J].
Bah, Andrew ;
Lim, Kim Yong ;
Wei, Fuhua ;
Khursheed, Anjam ;
Sow, Chorng Haur .
SCIENTIFIC REPORTS, 2019, 9 (1)
[4]   Development of zinc-oxide nanorods on chemically etched zinc plates suitable for high-efficiency photovoltaics solar cells [J].
Basher, Mohammad Khairul ;
Shah Riyadh, S. M. ;
Hossain, M. Khalid ;
Hassan, Mahmudul ;
Akand, Md. Abdur Rafiq ;
Zumahi, S. M. Amir-Al ;
Matin, Md. Abdul ;
Das, Narottam ;
Nur-E-Alam, Mohammad .
OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (04)
[5]   A low-temperature solution-processed indium incorporated zinc oxide electron transport layer for high-efficiency lead sulfide colloidal quantum dot solar cells [J].
Bashir, Rabia ;
Bilal, Muhammad Kashif ;
Bashir, Amna ;
Zhao, Jianhong ;
Asif, Sana Ullah ;
Ahmad, Waqar ;
Xie, Jiyang ;
Hu, Wanbiao .
NANOSCALE, 2021, 13 (30) :12991-12999
[6]   Structural and Luminescence Properties of Highly Crystalline ZnO Nanoparticles Prepared by Sol-Gel Method [J].
Bousslama, Wiem ;
Elhouichet, Habib ;
Gelloz, Bernard ;
Sieber, Brigitte ;
Addad, Ahmed ;
Moreau, Myriam ;
Ferid, Mokhtar ;
Koshida, Nobuyoshi .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2012, 51 (04)
[7]   Synthesis of Vertically Aligned ZnO Nanorods Using Sol-gel Seeding and Colloidal Lithography Patterning [J].
Chalangar, Ebrahim ;
Nur, Omer ;
Willander, Magnus ;
Gustafsson, Anders ;
Pettersson, Hakan .
NANOSCALE RESEARCH LETTERS, 2021, 16 (01)
[8]   ZnO nanoplates with abundant porosity for significant formaldehyde-sensing [J].
Chen, Huiting ;
Li, Chenglong ;
Zhang, Xugang ;
Yang, Wei .
MATERIALS LETTERS, 2020, 260
[9]   Fabrication of Large-Scale High-Mobility Flexible Transparent Zinc Oxide Single Crystal Wafers [J].
Chen, Yi-Cheng ;
Tu, Yu-Hao ;
Chen, Li-Wei ;
Lai, Yu-Hong ;
Tsai, Meng-Fu ;
Lin, Ying-Xiu ;
Lai, Hou-Chou ;
Chiang, Ching-Yu ;
Liu, Heng-Jui ;
Pan, Hsin-Che ;
Yang, Tzu-Yi ;
Zhang, Dawei ;
Seidel, Jan ;
Wu, Jyh-Ming ;
Chueh, Yu-Lun ;
Chang, Wen-Hao ;
Ku, Ching-Shun ;
Chen, Shih-Hsun ;
Chang, Li ;
Chu, Ying-Hao .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (16) :18991-18998
[10]   Growth mechanism studies of ZnO nanowire arrays via hydrothermal method [J].
Chevalier-Cesar, Clotaire ;
Capochichi-Gnambodoe, Martine ;
Leprince-Wang, Yamin .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2014, 115 (03) :953-960