NON-CONVERGENCE OF SOME NON-COMMUTING DOUBLE ERGODIC AVERAGES

被引:1
作者
Austin, Tim [1 ]
机构
[1] Univ Warwick, Math Inst, Zeeman Bldg, Coventry CV4 7AL, England
关键词
SZEMEREDI; THEOREM;
D O I
10.1090/proc/17144
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S and T be measure-preserving transformations of a probability space (X, B, mu). Let f be a bounded measurable function, and consider the integrals of the corresponding 'double' ergodic averages: 1 n n & yuml; i"0 <acute accent>1 & zdot;f(Six)f(Tix)d mu (x) (n % 1). We construct examples for which these integrals do not converge as n-> oo. These include examples in which S and T are rigid, and hence have entropy zero, answering a question of Frantzikinakis and Host. Our proof begins with a corresponding construction for orthogonal operators on a Hilbert space, and then obtains transformations of a Gaussian measure space from them.
引用
收藏
页码:1701 / 1707
页数:7
相关论文
共 18 条
[1]  
Assani I., 2005, C MATH, V102, P245, DOI 10.4064/cm102-2-6
[2]   JOINT ERGODICITY AND MIXING [J].
BEREND, D .
JOURNAL D ANALYSE MATHEMATIQUE, 1985, 45 :255-284
[3]  
BOURGAIN J, 1990, J REINE ANGEW MATH, V404, P140
[4]  
CONZE JP, 1984, B SOC MATH FR, V112, P143
[5]  
Cornfeld I. P., 1982, Grundlehren der mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences, DOI DOI 10.1007/978-1-4615-6927-5
[6]   Pointwise convergence of some multiple ergodic averages [J].
Donoso, Sebastian ;
Sun, Wenbo .
ADVANCES IN MATHEMATICS, 2018, 330 :946-996
[7]   Multiple recurrence and convergence without commutativity [J].
Frantzikinakis, Nikos ;
Host, Bernard .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2023, 107 (05) :1635-1659
[8]   FURSTENBERG SYSTEMS OF HARDY FIELD SEQUENCES AND APPLICATIONS [J].
Frantzikinakis, Nikos .
JOURNAL D ANALYSE MATHEMATIQUE, 2022, 147 (01) :333-372
[9]   AN ERGODIC SZEMEREDI THEOREM FOR COMMUTING TRANSFORMATIONS [J].
FURSTENBERG, H ;
KATZNELSON, Y .
JOURNAL D ANALYSE MATHEMATIQUE, 1978, 34 :275-291
[10]   ERGODIC BEHAVIOR OF DIAGONAL MEASURES AND A THEOREM OF SZEMEREDI ON ARITHMETIC PROGRESSIONS [J].
FURSTENBERG, H .
JOURNAL D ANALYSE MATHEMATIQUE, 1977, 31 :204-256