Bioengineering tools for next-generation neural organoids

被引:0
作者
O'Laughlin, Richard [1 ,2 ]
Cheng, Fangyi [3 ]
Song, Hongjun [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
Ming, Guo-li [1 ,2 ,3 ,4 ,6 ,8 ]
机构
[1] Univ Penn, Perelman Sch Med, Dept Neurosci, Philadelphia, PA 19104 USA
[2] Univ Penn, Mahoney Inst Neurosci, Perelman Sch Med, Philadelphia, PA 19104 USA
[3] Univ Penn, Sch Engn, Grad Program Bioengn, Philadelphia, PA 19104 USA
[4] Univ Penn, Perelman Sch Med, Dept Cell & Dev Biol, Philadelphia, PA 19104 USA
[5] Univ Penn, Perelman Sch Med, Dept Neurosurg, Philadelphia, PA 19104 USA
[6] Univ Penn, Inst Regenerat Med, Philadelphia, PA 19104 USA
[7] Univ Penn, Epigenet Inst, Perelman Sch Med, Philadelphia, PA 19104 USA
[8] Univ Penn, Perelman Sch Med, Dept Psychiat, Philadelphia, PA 19104 USA
关键词
brain; organoid; neurodevelopment; bioengineering; microfabrication; 3D printing; SELF-ORGANIZATION; CHOROID-PLEXUS; CELL; MODEL; SUBTYPE; BIOLOGY;
D O I
10.1016/j.conb.2025.103011
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Human stem cell-derived neural organoids were recently introduced as powerful in vitro 3D experimental model systems that innately undergo critical steps of organogenesis in culture and exhibit molecular, cellular, and structural features similar to the fetal human nervous system. These organoids have yielded new insights into human neurodevelopment and associated disorders. However, neural organoids have some crucial limitations that arise from the loosely controlled conditions for their development, an inability to maintain their spatial orientation in culture and a lack of technologies for taking long-term measurements on their morphology and electrical activity. Here, we review recent progress in using bioengineering methods to improve neural organoid formation and analysis by leveraging microfabrication, biomaterials, 3D printing, and flexible electrodes. We discuss how the applications of each technique can help to address critical limitations with standard neural organoid models. We conclude with a perspective on future applications of bioengineered next-generation neural organoids.
引用
收藏
页数:10
相关论文
共 75 条
[1]   Synthetic alternatives to Matrigel [J].
Aisenbrey, Elizabeth A. ;
Murphy, William L. .
NATURE REVIEWS MATERIALS, 2020, 5 (07) :539-551
[2]   Generating human neural diversity with a multiplexed morphogen screen in organoids [J].
Amin, Neal D. ;
Kelley, Kevin W. ;
Kaganovsky, Konstantin ;
Onesto, Massimo ;
Hao, Jin ;
Miura, Yuki ;
Mcqueen, James P. ;
Reis, Noah ;
Narazaki, Genta ;
Li, Tommy ;
Kulkarni, Shravanti ;
Pavlov, Sergey ;
Pasca, Sergiu P. .
CELL STEM CELL, 2024, 31 (12) :1831-1846.e9
[3]   Controlling organoid symmetry breaking uncovers an excitable system underlying human axial elongation [J].
Anand, Giridhar M. ;
Megale, Heitor C. ;
Murphy, Sean H. ;
Weis, Theresa ;
Lin, Zuwan ;
He, Yichun ;
Wang, Xiao ;
Liu, Jia ;
Ramanathan, Sharad .
CELL, 2023, 186 (03) :497-+
[4]   Generation of Functional Human 3D Cortico-Motor Assembloids [J].
Andersen, Jimena ;
Revah, Omer ;
Miura, Yuki ;
Thom, Nicholas ;
Amin, Neal D. ;
Kelley, Kevin W. ;
Singh, Mandeep ;
Chen, Xiaoyu ;
Thete, Mayuri Vijay ;
Walczak, Elisabeth M. ;
Vogel, Hannes ;
Fan, H. Christina ;
Pasca, Sergiu P. .
CELL, 2020, 183 (07) :1913-+
[5]   Understanding Immune-Driven Brain Aging by Human Brain Organoid Microphysiological Analysis Platform [J].
Ao, Zheng ;
Song, Sunghwa ;
Tian, Chunhui ;
Cai, Hongwei ;
Li, Xiang ;
Miao, Yifei ;
Wu, Zhuhao ;
Krzesniak, Jonathan ;
Ning, Bo ;
Gu, Mingxia ;
Lee, Luke P. ;
Guo, Feng .
ADVANCED SCIENCE, 2022, 9 (27)
[6]   Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia [J].
Bershteyn, Marina ;
Nowakowski, Tomasz J. ;
Pollen, Alex A. ;
Di Lullo, Elizabeth ;
Nene, Aishwarya ;
Wynshaw-Boris, Anthony ;
Kriegstein, Arnold R. .
CELL STEM CELL, 2017, 20 (04) :435-+
[7]   Assembly of functionally integrated human forebrain spheroids [J].
Birey, Fikri ;
Andersen, Jimena ;
Makinson, Christopher D. ;
Islam, Saiful ;
Wei, Wu ;
Huber, Nina ;
Fan, H. Christina ;
Metzler, Kimberly R. Cordes ;
Panagiotakos, Georgia ;
Thom, Nicholas ;
O'Rourke, Nancy A. ;
Steinmetz, Lars M. ;
Bernstein, Jonathan A. ;
Hallmayer, Joachim ;
Huguenard, John R. ;
Pasca, Sergiu P. .
NATURE, 2017, 545 (7652) :54-+
[8]   Non-synaptic function of the autism spectrum disorder-associated gene SYNGAP1 in cortical neurogenesis [J].
Birtele, Marcella ;
Del Dosso, Ashley ;
Xu, Tiantian ;
Nguyen, Tuan ;
Wilkinson, Brent ;
Hosseini, Negar ;
Nguyen, Sarah ;
Urenda, Jean-Paul ;
Knight, Gavin ;
Rojas, Camilo ;
Flores, Ilse ;
Atamian, Alexander ;
Moore, Roger ;
Sharma, Ritin ;
Pirrotte, Patrick ;
Ashton, Randolph S. ;
Huang, Eric J. ;
Rumbaugh, Gavin ;
Coba, Marcelo P. ;
Quadrato, Giorgia .
NATURE NEUROSCIENCE, 2023, 26 (12) :2090-2103
[9]   Recapitulating macro-scale tissue self-organization through organoid bioprinting [J].
Brassard, Jonathan A. ;
Nikolaev, Mike ;
Huebscher, Tania ;
Hofer, Moritz ;
Lutolf, Matthias P. .
NATURE MATERIALS, 2021, 20 (01) :22-29
[10]   A 3D Bioprinted Cortical Organoid Platform for Modeling Human Brain Development [J].
Cadena, Melissa A. ;
Sing, Anson ;
Taylor, Kylie ;
Jin, Linqi ;
Ning, Liqun ;
Amoli, Mehdi Salar ;
Singh, Yamini ;
Lanjewar, Samantha N. ;
Tomov, Martin L. ;
Serpooshan, Vahid ;
Sloan, Steven A. .
ADVANCED HEALTHCARE MATERIALS, 2024, 13 (27)