共 48 条
[1]
Duan R., Liao Y., Morphological analysis based adaptive blind deconvolution approach for bearing fault feature extraction, IEEE Trans. Ind. Electron., 71, 7, pp. 7864-7875, (2024)
[2]
Duan R., Liao Y., Impulsive feature extraction with improved singular spectrum decomposition and sparsity-closing morphological analysis, Mech. Syst. Signal Process., 180, (2022)
[3]
Zhang J., Jiang Y., Li X., Huo M., Luo H., Yin S., An adaptive remaining useful life prediction approach for single battery with unlabeled small sample data and parameter uncertainty, Rel. Eng. Syst. Saf., 222, (2022)
[4]
Zhao K., Jia Z., Jia F., Shao H., Multi-scale integrated deep selfattention network for predicting remaining useful life of aero-engine, Eng. Appl. Artif. Intell., 120, (2023)
[5]
Zhao B., Yuan Q., A novel deep learning scheme for multi-condition remaining useful life prediction of rolling element bearings, J. Manuf. Syst., 61, pp. 450-460, (2021)
[6]
Wang X., Wang T., Ming A., Zhang W., Li A., Chu F., Spatiotemporal non-negative projected convolutional network with bidirectional NMF and 3DCNN for remaining useful life estimation of bearings, Neurocomputing, 450, pp. 294-310, (2021)
[7]
Yao D., Li B., Liu H., Yang J., Jia L., Remaining useful life prediction of roller bearings based on improved 1D-CNN and simple recurrent unit, Measurement, 175, (2021)
[8]
Catelani M., Ciani L., Fantacci R., Patrizi G., Picano B., Remaining useful life estimation for prognostics of lithium-ion batteries based on recurrent neural network, IEEE Trans. Instrum. Meas., 70, pp. 1-11, (2021)
[9]
Wang Y., Wu J., Cheng Y., Wang J., Hu K., Memory-enhanced hybrid deep learning networks for remaining useful life prognostics of mechanical equipment, Measurement, 187, (2022)
[10]
Elsheikh A., Yacout S., Ouali M.-S., Bidirectional handshaking LSTM for remaining useful life prediction, Neurocomputing, 323, pp. 148-156, (2019)