Cox regression model with doubly truncated and interval-censored data

被引:0
|
作者
Shen, Pao-sheng [1 ]
机构
[1] Tunghai Univ, Dept Stat, Taichung 40704, Taiwan
关键词
Interval censoring; Double truncation; Conditional maximum likelihood; EM algorithm; Proportional hazard; MAXIMUM-LIKELIHOOD-ESTIMATION; BIVARIATE SURVIVAL-DATA; SEMIPARAMETRIC TRANSFORMATION MODELS; PROPORTIONAL HAZARDS MODEL; SPECIAL EXPONENTIAL FAMILY; INCUBATION PERIOD; ESTIMATOR; INFERENCE;
D O I
10.1016/j.csda.2024.108090
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Interval sampling is an efficient sampling scheme used in epidemiological studies. Doubly truncated (DT) data arise under this sampling scheme when the failure time can be observed exactly. In practice, the failure time may not be observed and might be recorded only within time intervals, leading to doubly truncated and interval censored (DTIC) data. This article considers regression analysis of DTIC data under the Cox proportional hazards (PH) model and develops the conditional maximum likelihood estimators (cMLEs) for the regression parameters and baseline cumulative hazard function of models. The cMLEs are shown to be consistent and asymptotically normal. Simulation results indicate that the cMLEs perform well for samples of moderate size.
引用
收藏
页数:10
相关论文
共 50 条