Galois theory and homology in quasi-abelian functor categories

被引:0
作者
Egner, Nadja [1 ]
机构
[1] Univ Catholic Louvain, Inst Rech Math & Phys, Chemin Cyclotron 2, B-1348 Louvain La Neuve, Belgium
关键词
(Double) central extension; Hopf formula for homology; Torsion theory; Quasi-abelian category; Functor category; Internal groupoid; Birkhoff subcategory; CENTRAL EXTENSIONS; TORSION THEORIES; HOPF FORMULAS; FACTORIZATION;
D O I
10.1016/j.jalgebra.2024.09.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a finite category T, we consider the functor category dT, T , where d can be any quasi-abelian category. Examples of quasi-abelian categories are given by any abelian category but also by non-exact additive categories as the categories of torsion(-free) abelian groups, topological abelian groups, locally compact abelian groups, Banach spaces and Fr & eacute;chet spaces. In this situation, the categories of various internal categorical structures in d, such as the categories of internal n-fold groupoids, are equivalent to functor categories dT T for a suitable category T. For a replete full subcategory S of T, we define Fto be the full subcategory of dT T whose objects are given by the functors F : T -> d with F ( T ) = 0 for all T is an element of / S. We prove that Fis a torsion-free Birkhoff subcategory of dT. T . This allows us to study (higher) central extensions from categorical Galois theory in dT T with respect to Fand generalized Hopf formulae for homology. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:502 / 532
页数:31
相关论文
共 42 条
  • [31] Janelidze G., 1994, I. Appl. Categ. Structures, V2, P245
  • [32] Janelidze G., 2000, Theory Appl. Categ., V7, P219
  • [33] Janelidze G., 2003, Georgian Math. J., V10, P99
  • [34] Janelidze G, 2007, CONTEMP MATH, V431, P249
  • [35] Janelidze Z, 2010, THEOR APPL CATEG, V23, P221
  • [36] LUE AST, 1967, PROC CAMB PHILOS S-M, V63, P569
  • [37] Mac Lane S., 1971, Graduate Texts in Math., V6
  • [38] Rosicky J, 2007, J HOMOTOPY RELAT STR, V2, P295
  • [39] Rump W., 2001, CAHIERS TOPOLOGIE GE, V42, P163
  • [40] A counterexample to Raikov's conjecture
    Rump, Wolfgang
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2008, 40 : 985 - 994