A position-based method for detecting orbital angular momentum modes

被引:0
作者
Zu, Yue [1 ]
Du, Yongxing [1 ]
Qin, Ling [1 ]
Li, Minchao [1 ]
Li, Baoshan [1 ]
机构
[1] Inner Mongolia Univ Sci & Technol, Sch Informat Engn, Baotou 014010, Peoples R China
基金
中国国家自然科学基金;
关键词
orbital angular momentum (OAM); vortex electromagnetic waves; OAM mode detection;
D O I
10.1088/1361-6463/ad89d2
中图分类号
O59 [应用物理学];
学科分类号
摘要
Due to the inherent limitations of current orbital angular momentum (OAM) mode detection methods and constraints posed by the physical size of receiving antennas, accurately identifying higher-order OAM modes represents a significant challenge. Therefore, there is a pressing necessity to overcome these hurdles. This paper introduces a new approach to OAM mode detection that exploits positional information. Our methodology ascertains the OAM mode by examining the phase and position data of the electric field at any two randomly chosen points within the energy's spatial distribution radiated by vortex electromagnetic waves. This innovation promises not only to precisely detect higher-order OAM modes but also grants greater versatility in the placement of receiving antennas. Moreover, the study delves into the correlation between the electric field phase of vortex electromagnetic waves, the azimuth angle, and the receiving distance. The validity of our approach is confirmed through both simulation outcomes and experimental data derived from physical tests.
引用
收藏
页数:8
相关论文
共 17 条
  • [1] Wireless data encoding and decoding using OAM modes
    Allen, B.
    Tennant, A.
    Bai, Qiang
    Chatziantoniou, E.
    [J]. ELECTRONICS LETTERS, 2014, 50 (03) : 232 - 232
  • [2] ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES
    ALLEN, L
    BEIJERSBERGEN, MW
    SPREEUW, RJC
    WOERDMAN, JP
    [J]. PHYSICAL REVIEW A, 1992, 45 (11): : 8185 - 8189
  • [3] Multiple-antenna phase-gradient detection for OAM radio communications
    Cano, E.
    Allen, B.
    [J]. ELECTRONICS LETTERS, 2015, 51 (09) : 724 - 725
  • [4] Chunlin W., 2023, Research on Key Technologies in the OAM-Based Communication System, DOI [10.27005/d.cnki.gdzku.2023.004203, DOI 10.27005/D.CNKI.GDZKU.2023.004203]
  • [5] Drysdale TD, 2017, IEEE ANTENNAS PROP, P1431, DOI 10.1109/APUSNCURSINRSM.2017.8072758
  • [6] Variable Scale Aperture Sampling Reception Method for Multiple Orbital Angular Momentum Modes Vortex Wave
    Feng, Qiang
    Liang, Jun
    Li, Long
    [J]. IEEE ACCESS, 2019, 7 : 158847 - 158857
  • [7] Misalignment Measurement of Orbital Angular Momentum Signal Based on Spectrum Analysis and Image Processing
    Gao, Xinlu
    Song, Xiyao
    Zheng, Zhennan
    Xie, Mutong
    Huang, Shanguo
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2020, 68 (01) : 521 - 526
  • [8] Simulation of orbital angular momentum radio communication systems based on partial aperture sampling receiving scheme
    Hu, Yiping
    Zheng, Shilie
    Zhang, Zhuofan
    Chi, Hao
    Jin, Xiaofeng
    Zhang, Xianmin
    [J]. IET MICROWAVES ANTENNAS & PROPAGATION, 2016, 10 (10) : 1043 - 1047
  • [9] Jackson JD., 2021, CLASSICAL ELECTRODYN, VThird
  • [10] Orbital angular momentum in radio: Measurement methods
    Mohammadi, Siavoush M.
    Daldorff, Lars K. S.
    Forozesh, Kamyar
    Thide, Bo
    Bergman, Jan E. S.
    Isham, Brett
    Karlsson, Roger
    Carozzi, T. D.
    [J]. RADIO SCIENCE, 2010, 45