Prompt Engineering for Narrative Choice Generation

被引:1
|
作者
Harmon, Sarah [1 ]
Rutman, Sophia [1 ]
机构
[1] Bowdoin Coll, Brunswick, ME 04011 USA
来源
INTERACTIVE STORYTELLING, ICIDS 2023, PT I | 2023年 / 14383卷
关键词
Interactive narrative design; Choice-based narrative; Narrative choice generation; Prompt engineering;
D O I
10.1007/978-3-031-47655-6_13
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Large language models (LLMs) have recently revolutionized performance on a variety of natural language generation tasks, but have yet to be studied in terms of their potential for generating reasonable character choices as well as subsequent decisions and consequences given a narrative context. We use recent (not yet available for LLM training) film plot excerpts as an example initial narrative context and explore how different prompt formats might affect narrative choice generation by open-source LLMs. The results provide a first step toward understanding effective prompt engineering for future human-AI collaborative development of interactive narratives.
引用
收藏
页码:208 / 225
页数:18
相关论文
共 50 条
  • [21] Improving Training Dataset Balance with ChatGPT Prompt Engineering
    Kochanek, Mateusz
    Cichecki, Igor
    Kaszyca, Oliwier
    Szydlo, Dominika
    Madej, Michal
    Jedrzejewski, Dawid
    Kazienko, Przemyslaw
    Kocon, Jan
    ELECTRONICS, 2024, 13 (12)
  • [22] Prompt engineering: The next big skill in rheumatology research
    Venerito, Vincenzo
    Lalwani, Devansh
    Del Vescovo, Sergio
    Iannone, Florenzo
    Gupta, Latika
    INTERNATIONAL JOURNAL OF RHEUMATIC DISEASES, 2024, 27 (05)
  • [23] PromptDeck: A No-Code Platform for Modular Prompt Engineering
    Bucchiarone, Antonio
    Panciera, Marco
    Cicchetti, Antonio
    Mana, Nadia
    Castelluccio, Carlotta
    Stott, Lee
    ACM/IEEE 27TH INTERNATIONAL CONFERENCE ON MODEL DRIVEN ENGINEERING LANGUAGES AND SYSTEMS: COMPANION PROCEEDINGS, MODELS 2024, 2024, : 895 - 904
  • [24] AI literacy and its implications for prompt engineering strategies
    Knoth N.
    Tolzin A.
    Janson A.
    Leimeister J.M.
    Computers and Education: Artificial Intelligence, 2024, 6
  • [25] Prompt Engineering, Tools and Methods for Immersive Experience Development
    Rozo-Torres, Alexander
    Sarmiento, Wilson J.
    2024 IEEE CONFERENCE ON VIRTUAL REALITY AND 3D USER INTERFACES ABSTRACTS AND WORKSHOPS, VRW 2024, 2024, : 125 - 132
  • [26] Prompt engineering for digital mental health: a short review
    Priyadarshana, Y. H. P. P.
    Senanayake, Ashala
    Liang, Zilu
    Piumarta, Ian
    FRONTIERS IN DIGITAL HEALTH, 2024, 6
  • [27] Impromptu: a framework for model-driven prompt engineering
    Morales, Sergio
    Clariso, Robert
    Cabot, Jordi
    SOFTWARE AND SYSTEMS MODELING, 2025,
  • [28] Prompt Engineering Paradigms for Medical Applications: Scoping Review
    Zaghir, Jamil
    Naguib, Marco
    Bjelogrlic, Mina
    Neveol, Aurelie
    Tannier, Xavier
    Lovis, Christian
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2024, 26
  • [29] Development and validation of the prompt engineering competence scale (PECS)
    Gibreel, Omer
    Arpaci, Ibrahim
    INFORMATION DEVELOPMENT, 2025,
  • [30] A taxonomy of prompt modifiers for text-to-image generation
    Oppenlaender, Jonas
    BEHAVIOUR & INFORMATION TECHNOLOGY, 2024, 43 (15) : 3763 - 3776