Liouville-type laws for quasilinear equations with absorption or source

被引:0
作者
Li, Weiyang [1 ,2 ,3 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Mem Univ, Dept Math & Stat, St John, NF A1C 5S7, Canada
关键词
m-Laplacian equation; Liouville type theorems; Radial supersolutions; Comparison principle; Gradient term; SEMILINEAR ELLIPTIC-EQUATIONS; P-LAPLACE EQUATION; POSITIVE SOLUTIONS; SINGULAR SOLUTIONS; LOCAL BEHAVIOR; BOUNDARY SINGULARITIES; GLOBAL PROPERTIES; NONEXISTENCE; THEOREMS; SUPERSOLUTIONS;
D O I
10.1016/j.jmaa.2024.128889
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we are concerned with the Liouville-type theorems and the radial supersolutions for the m-Laplacian equations with absorption or source +/-|del u|(q) = Delta(m)u + f(p)(u). Here, q > 0 and f(p) satisfies either f(p)(s) > gamma s(p) near zero or equals to gamma s(p) for a positive constant pair {p, gamma}. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:38
相关论文
共 41 条
[1]   Singular solutions of elliptic equations involving nonlinear gradient terms on perturbations of the ball [J].
Aghajani, A. ;
Cowan, C. ;
Lui, S. H. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (04) :2865-2896
[2]   Existence and regularity of nonlinear advection problems [J].
Aghajani, A. ;
Cowan, C. ;
Lui, S. H. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 166 :19-47
[3]  
Aghajani A., Positive supersolutions of non-autonomous quasilinear elliptic equations with mixed reaction
[4]   Nonexistence results for elliptic equations with gradient terms [J].
Alarcon, S. ;
Burgos-Perez, M. A. ;
Garcia-Melian, J. ;
Quaas, A. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (01) :758-780
[5]   Nonexistence of positive supersolutions to some nonlinear elliptic problems [J].
Alarcon, S. ;
Garcia-Melian, J. ;
Quaas, A. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 99 (05) :618-634
[6]   Nonexistence of Positive Supersolutions of Elliptic Equations via the Maximum Principle [J].
Armstrong, Scott N. ;
Sirakov, Boyan .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (11) :2011-2047
[7]  
Bidaut-Veron M-F., 2023, Calc. Var. Partial Differ. Equ., V62, P241
[8]   TRACE AND BOUNDARY SINGULARITIES OF POSITIVE SOLUTIONS OF A CLASS OF QUASILINEAR EQUATIONS [J].
Bidaut-veron, Marie-francoise ;
Veron, Laurent .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2023, 43 (3-4) :1026-1051
[9]   Boundary singular solutions of a class of equations with mixed absorption-reaction [J].
Bidaut-Veron, Marie-Francoise ;
Garcia-Huidobro, Marta ;
Veron, Laurent .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (03)
[10]   SINGULAR SOLUTIONS OF SOME ELLIPTIC EQUATIONS INVOLVING MIXED ABSORPTION-REACTION [J].
Bidaut-Veron, Marie-Francoise ;
Garcia-Huidobro, Marta ;
Veron, Laurent .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (08) :3861-3930