Remaining Useful Life Prediction based on Multisource Domain Transfer and Unsupervised Alignment

被引:0
|
作者
Lv, Yi [1 ,2 ]
Zhou, Ningxu [2 ]
Wen, Zhenfei [2 ]
Shen, Zaichen [3 ]
Chen, Aiguo [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp, Zhongshan Inst, Zhongshan, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chnegdu, Peoples R China
[3] Guangdong Univ Technol, Guangzhou, Peoples R China
来源
EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY | 2025年 / 27卷 / 02期
关键词
remaining useful life prediction; multisource domain adaptation; temporal conventional network; multilinear conditioning; NETWORK; MODEL;
D O I
10.17531/ein/194116
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Transfer learning enhances remaining useful life (RUL) predictions by addressing data scarcity and operational challenges. Nonetheless, when a significant disparity in degradation data distribution exists between source and target domains, single-source domain transfer learning risks misleading or negative transfer. Multisource domain transfer learning partially addresses these issues. However, it ignores substantial discrepancies in feature-label correlations, which would impair the RUL prediction accuracy. Thus, we propose to develop a multisource domain unsupervised adaptive learning method, which is powered by a temporal convolutional network. Using a multilinear conditioning strategy, we combine degradation data and subregion labels to construct input characteristics for the domain discriminator. Additionally, we design a feature extractor that produces label-related features, invariant across domains, effectively enhancing prediction precision. We evaluate our method using the publicly available C-MAPSS degradation dataset with a case study and ablation experiments.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Adaptive and robust prediction for the remaining useful life of electrolytic capacitors
    Qin, Qi
    Zhao, Shuai
    Chen, Shaowei
    Huang, Dengshan
    Liang, Jian
    MICROELECTRONICS RELIABILITY, 2018, 87 : 64 - 74
  • [42] Remaining useful life Prediction of air spring
    Ahmadzadeh, Farzaneh
    Biteus, Jonas
    Steinert, Olof
    2019 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2019,
  • [43] Position Encoding Based Convolutional Neural Networks for Machine Remaining Useful Life Prediction
    Jin, Ruibing
    Wu, Min
    Wu, Keyu
    Gao, Kaizhou
    Chen, Zhenghua
    Li, Xiaoli
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2022, 9 (08) : 1427 - 1439
  • [44] Remaining useful life prediction with insufficient degradation data based on deep learning approach
    Lyu, Yi
    Jiang, Yijie
    Zhang, Qichen
    Chen, Ci
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2021, 23 (04): : 745 - 756
  • [45] Remaining Useful Life Prediction Via Interactive Attention-Based Deep Spatio-Temporal Network Fusing Multisource Information
    Lu, Shixiang
    Gao, Zhiwei
    Xu, Qifa
    Jiang, Cuixia
    Xie, Tianming
    Zhang, Aihua
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (07) : 8007 - 8016
  • [46] Domain generalization via adversarial out-domain augmentation for remaining useful life prediction of bearings under unseen conditions
    Ding, Yifei
    Jia, Minping
    Cao, Yudong
    Ding, Peng
    Zhao, Xiaoli
    Lee, Chi-Guhn
    KNOWLEDGE-BASED SYSTEMS, 2023, 261
  • [47] Prediction of Aeroengine Remaining Useful Life Based on SE-BiLSTM
    Cui, Jianguo
    Wang, Yujie
    Cui, Xiao
    Jiang, Liying
    Liu, Dong
    Du, Wenyou
    Tang, Xiaochu
    Wang, Jinglin
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 1781 - 1786
  • [48] Remaining Useful Life Prediction Based on ConvGRU-Attention Method
    Zhao Z.
    Li Q.
    Li C.
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2022, 42 (03): : 572 - 579
  • [49] A remaining useful life prediction method based on PSR-former
    Zhang, Huang
    Zhang, Shuyou
    Qiu, Lemiao
    Zhang, Yiming
    Wang, Yang
    Wang, Zili
    Yang, Gaopeng
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [50] Remaining Useful Battery Life Prediction for UAVs based on Machine Learning
    Mansouri, Sina Sharif
    Karvelis, Petros
    Georgoulas, George
    Nikolakopoulos, George
    IFAC PAPERSONLINE, 2017, 50 (01): : 4727 - 4732